
 

 

In-Vehicle Driver Detection  

Using Mobile Phone Sensors 

 

Hon Lung Chu 

Advisor: Romit Roy Choudhury 

 

 

SUBMITTED FOR GRADUATION WITH DEPARTMENTAL DISTINCTION IN 

ELECTRICAL AND COMPUTER ENGINEERING 

APRIL 20, 2011 

 

  



 

Hon Lung Chu | April 20, 2011 
 

2 In-Vehicle Driver Detection Using Mobile Phone Sensors  

Acknowledgements 
This project would not have been possible without the tireless dedication of 

numerous people. First, I would like to thank my advisor and mentor, Professor Romit 

Roy Choudhury for his persistent and insightful guidance throughout the project. 

Secondly, I would like to thank my partners Jeff Shen and Vijay Raman, who has 

worked equally hard on this project to keep me in check and motivated. The project 

was started with the help of Ga-Young Joung, Chuan Qin, Justin Manweiler and Aman 

Kansal, all of whom contributed significant work in different phases of the project. 

Finally, I’d like to thank everyone in the Systems Networking Research Group, who 

generously offered their advice and insights whenever the project hits a bump. Thank 

you everyone!  



 

Hon Lung Chu | April 20, 2011 
 

3 In-Vehicle Driver Detection Using Mobile Phone Sensors  

Abstract 
With the advances in smartphone technologies, automated detection and 

awareness of various user statuses has become a focal point of mobile computing 

research. In this project, I present a software-based, mobile-phone sensing system to 

determine if the user is the driver or a passenger in an automobile. The system helps 

the mobile device’s identify the user’s available attention and focus, enabling it to 

control delivery of potentially interrupting events such as incoming calls and messages. 

Since the system does not employ additional hardware, the phone may be carried in 

different locations and orientations. In addition, the paper will describe the various 

design challenges, including the evaluation of the system’s energy consumption and 

operation in noisy environments using the Android 2.3.x and iPhone OS 4.x devices.  
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1 Introduction 
The modern mobile phone hosts a variety of sensors capable of capturing and 

inferring significant amounts of information about the user’s statuses and activities. One 

of the key causes of traffic accidents is the use of cell phones while driving. This project 

presents the Driver Detection System (DDS), a phone-based system to determine if the 

user in a car is a driver or passenger, allowing the phone to adaptively intercept 

incoming calls and messages based on the amount of available user attention. 

Traffic safety is only one of the many important applications of the DDS. 

Americans and Europeans spent an average of 86 and 43 minutes per day in the car [2], 

amounting a significant amount during which the users’ attentions are in entirely 

different states. For example, passengers in a car will have a greater amount of 

available attention, freeing them to respond to emails, social networking updates and 

nearby activity notifications. For the drivers, however, their attention is directed toward 

the road and most such notifications should be suppressed or redirected toward the 

passenger.  

Data from the DDS can be used to track driving behaviors of users and provide 

greater knowledge to authorities. Transportation departments can use the data to 

optimize carpooling lanes and incentives, and parents of newly licensed teenage drivers 

can use this information to gradually increase the access of their cars as the teen 

becomes more experienced. Finally, with sufficiently reliable sampling, insurance 

companies can offer special incentives to drivers who have demonstrated safe driving 

behaviors. Ultimately, DDS is meant to serve as a building block for developers to 

create applications that benefit from the detection of driving activity. 

The DDS seeks to capture and detect key user movements during the car entry 

process, as well as specific sound patterns unique to vehicles post-entry. The system is 

limited to sensors available on the modern smartphone, which creates a number of 

challenges in the solution design. Such events are short-lived, and power considerations 

limit the system’s ability to run continuously in the background. In addition, different 

users will carry their phones in different locations and orientation, and these cases must 

be addressed in the detection algorithm. Thirdly, the system must compensate for noise 

generated by the environment and different user movement patterns. Finally, the result 

must be produced quickly in real-time once the user starts driving. Hence, complex 

processing or excessive communication with back-end servers may not be appropriate 

for the design. 

Prior work has demonstrated the ability to determine if the user is in a vehicle 

[19], as well as determining the type of vehicle [27]. Available solutions only tracks the 
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speed of the GPS, locking the phone when the user is moving at speeds greater than 

specific cutoffs [26]. However, this design also prevents passengers in cars and other 

forms of public transportation from safely using their phones. DDS would contribute 

driving as a new activity within this domain of work, adding to an existing number of 

interesting detectable activities such as traffic tracking [28] and carbon footprint 

measurements [23]. 

Several people have contributed significantly to the DDS presented in this paper. 

Hence, I will describe the parts of the system which I contributed individually. These 

parts include the Entry Swing detection, the Handbag detection, and the power 

consumption measurements. A brief description of the whole system will be included in 

order to link my contributions to the rest of the project. 

2 Driver Detection 
2.1 Problem Outline 

 The goal of the system is to identify in real-time whether the mobile phone user 

is a driver or a passenger in a vehicle. Based on the discussion above, our approach will 

employ a completely software-based solution on the phone, without requiring additional 

wearable sensors or modifications to the users’ vehicles. The sensors used include the 

accelerometer, gyroscope, compass and microphone.  

2.1.1 Phone Location 

A recent study surveyed 419 users from U.S., Spain, and Finland. As shown in 

Table 1, the study found that 34% of all users carry their phone in their trouser pockets, 

41% carry the phones in a shoulder bag, and another 5% carry their phones in the 

upper body pockets [13]. Together, these three locations account for 80% of the 

different locations users might carry their phone. Our project focuses on these three 

cases and runs different sensing algorithms depending on the phone’s location. 

TABLE 1. Phone locations for users surveyed in [13]. 

Location Type Female Male Total In DDS? 

Trouser Pockets 8% (16) 57% (128) 34% (144) Y 
Shoulder Bags 66% (128) 4% (9) 33% (137) Y 

Backpacks 10% (19) 6% (13) 8% (32) Y 

Upper-Body Pockets 2% (3) 9% (20) 5% (23) Y 
Belt Enhancements 1% (2) 15% (33) 8% (35) N 

Others 14% (26) 9% (22) 11% (48) N 
Grand Total 100% (194) 100% (225) 100% (419) -- 
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2.1.2 Phone Orientation 

 Accelerometer data is a key part of movement pattern detection in the DDS 

design. However, raw accelerometer data is captured with regards only to the phone’s 

frame of reference. In other words, if the phone was placed faced up on a table, a 

translational movement to the left would register as a signal in the negative X direction, 

as shown in the upper left graph in Figure 1. However, if the phone was then flipped 

over, the same movement would be registered in the position X direction shown in the 

lower left graph in Figure 1. Different users will carry their phone in different 

orientations, even if the phones are located in the same position (i.e. trouser pockets). 

Our system uses orientation data from the gyroscope, compass and the smartphone’s 

internal algorithms create a rotation matrix, which helps reorient the raw accelerometer 

data to the universal reference frame based on the magnetic poles of the earth. The 

right column in Figure 1 demonstrates the orientation capabilities of our system. 

 
FIGURE 1. Reorientation of Accelerometer data. The left column shows the raw accelerometer readings 

for a leftward movement with the phone facing up (top) and facing down (bottom). The oriented 

accelerometer readings in the right column show that the data is unaffected by the phone’s orientation. 

 

2.2 Solution Design 

While there are three different positions for the DDS to address, the algorithms 

share common components which lead to simplifications in the system design. Figure 2 

summarizes the building blocks used in each of the three phone positions: trouser 

pockets, upper-body pocket, and handbag. In general, DDS uses a left vs. right 

algorithm to determine how the user entered the car. This is followed by a front vs. rear 

sensing scheme to determine if the user is sitting in the front row of the car or in the 

back. This allows DDS to determine the location of the phone inside the car and thus 

infer the user’s status as a driver or passenger. 
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FIGURE 2. DDS decision flow tree. In the outputs shown on the right, P denotes passenger and D 

denotes Driver. The left box, containing Entry Swing, Seat-belt and Handbag L/R denotes the left vs. 

right detection scheme, while the components in the middle denotes front vs. rear detection schemes. 

 

2.2.1 Left vs. Right algorithms 

Entry Swing: The Entry Swing block is used when the phone is in the trouser pocket, 

and determines if the user entered the vehicle from the driver side or the passenger 

side of the car. In addition, due to the constraint in leg movement when the user enters 

the car, the block can also determine if the phone is in the user’s left trouser pocket or 

right trouser pocket. This block uses data from the accelerometer, gyroscope and 

compass. 

Seat Belt: The Seat Belt block is used when the phone is in the upper body pockets, 

and captures the users’ movements as they buckle in their seat belts. The algorithm will 

detect the leftward movement as users on the driver side turns to grab the seat belt, 

which is followed by a rightward movement to plug in the seat belt. Users on the 

passenger side will perform the reverse motion, creating the distinction. This block uses 

data from the accelerometer, gyroscope and compass. 

Handbag L/R: The Handbag block is used when the phone is in the users’ handbag or 

book bag, and uses audio data to determine proximity to the turn signal source. The 

algorithm is similar to the Front vs. Rear block described below. 

2.2.2 Front vs. Rear algorithms 

Front vs. Rear: The Front vs. Rear block is used for all three positions – trouser 

pocket, upper-body pocket and handbag. The block determines if the phone is in the 

front or rear portion of the car. The block captures audio data from the car, compares 

the amplitude of the car turning signals to determine the phone’s distance to the front 
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of the car. Since the vehicle cabin is separated by the front passenger seats, the 

algorithm is able to detect a meaningful difference in amplitude, even with various 

levels of background noise and pocket thicknesses. This block requires communication 

with a cloud server in order to perform the comparison, which might lead to higher 

energy consumption. Audio data recorded from the microphone is used in this block. 

Pedal Press: The Pedal Press block is a special Front vs. Back algorithm that is only 

employed if the phone is in the trouser pocket. If the Entry Swing block determined that 

the user entered the car from the driver side, and the phone is located in the right 

trouser pocket, the Pedal Press block is used to detect the motion of the driver pressing 

the gas pedal. In this case, if the gas pedal motion is detect, the user is determined to 

be the driver. This block uses data from the accelerometer, gyroscope and compass. 

2.3 Event Triggers and Timeline 

The DDS system cannot run continuously – doing so would degrade the battery 

life of the phone significantly. Hence, triggers and timeouts must be employed in order 

to optimize the battery life. While the decision tree varies based on the phone’s location, 

the initial phases are the same.  

1. Walking and Pause: Initially, DDS will collect a 1 second accelerometer sample 

every minute to detect if the user is walking. Detection of walking has been 

demonstrated in prior works and DDS use a simple amplitude-based method to 

detect walking [29]. Once walking is detected, the accelerometer is turned on 

continuously until the user pauses, either to open a car door or simply moving to 

another room. 

2. Entry Swing and Seat-Belt Detection: Once a pause is detected, the 

accelerometer, gyroscope and compass will be turned, and both the Entry Swing 

and Seat-Belt algorithms will run on the phone. These detection algorithms will 

timeout when vehicular motion is detected, or a threshold of 15 seconds has 

been reached. Vehicular detection has been shown in prior works and is easy to 

detect from accelerometer data [27]. 

a. If the Entry Swing or Seat-Belt signature is detected within the 15 second 

timeout, DDS will move on to Step 3. 

b. If neither signatures are detected within the 15 second timeout, but 

vehicular motion is detected, the phone will move on to the Handbag 

block, which has a 3 minute timeout similar to the Front vs. Rear block in 

Step 3. 

c. If none of the signatures or vehicular motion is detected, the DDS resets 

back to Step 1. 
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3. Front vs. Rear Detection: During this step, a 3 minute audio sample is 

recorded using the phone’s microphone. At the end of the 3 minutes, DDS resets 

to Step 1. 

a. If the phone was detected to be in the right trouser pocket, and the user 

entered from the driver side, the phone will also run the Pedal Press 

algorithm. The DDS will timeout this SVM after 15 seconds, since it is 

necessary to press the brake pedal in order to start the vehicle.  

In the description above, I have assumed a left-handed vehicle for simplicity. 

The decision tree can be modified easily for users in a region with right-handed vehicles, 

which can be inferred from the phone’s carrier, rough location and time-zone. 

3 Sensing Algorithms 
This section will explore my contributions to the project in detail.  

3.1 Car Entry Swing 

 The Car Entry Swing detection is based on the concept that the driver’s phone 

will experience a different movement when entering the car compared to the passenger. 

Accelerometer, Gyroscope and Compass is used in this algorithm. Specifically, this Entry 

Swing can be broken down into two signatures, both shown in Figure 3.  

 
FIGURE 3. Car Entry Swing signatures. The top row shows the inner-foot signature present on the 

pockets closer to the car. The bottom row shows difference in transition from H (high) to L (low) for left 

vs. right pockets. 
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The inner-foot signature can be seen on the top row of Figure 3. The signature 

manifests as a blip during the car entry process. Repeated trials have shown that this 

signature is consistently present on the inner trouser pockets, namely, the right pocket 

for the driver and the left pocket for the passenger. Analysis of the car entry process 

indicates that the blip is caused by the footstep that the inner foot takes in order to 

enter the car. One observation made during the testing is users will always enter 

vehicles with their inner foot first, and hence, the “step” will always be present on the 

inner foot. While it is possible to enter the car with the outer foot first, doing so is 

awkward and unlikely to occur. As one can see from the top row, this blip is missing 

from the outer foot pockets. 

The second signature, termed the “pocket signature”, allows the phone to 

determine which pocket the phone is in, regardless of the driver or passenger status. 

From the bottom row of Figure 3, both the driver and the passenger’s left pockets (the 

first and the third column) experienced a low to high transition while the right pockets 

for both the driver and passenger experienced a high to low transition. Analysis during 

of the car entry process indicates that the transitions are caused by the swing of the 

phone toward the outside of the users during the car entry process. Taken together, 

these two signatures allow us to determine both the entry direction and which trouser 

pockets the phone is in. Table 2 summarizes this decision process. 

TABLE 2. Car Entry Swing Classifications 

User/Phone Location Inner-foot sign. Pocket sign. 

Driver/Left Pocket No L  H 

Driver/Right Pocket Yes H  L 

Passenger/Left Pocket Yes L  H 

Passenger/Right Pocket No H  L 

3.1.1 Support Vector Machine 

To quantify these qualitative observations, I used a support vector machine (SVM) 

to classify the input data into five categories – the four shown in Table 2 plus a group 

of “negative” data consisting of signatures from other periods of the car entry process. 

The features used in the SVM include segmented averages, peak and trough counts, 

variance, and derivatives of oriented accelerometer and gyroscope data. Peak and 

trough counts were used to detect the additional blips in the inner foot signature, and 

the variance and derivatives were used to identify the periods of transition which 

includes the inner foot signature. Segmented averages are used to identify the high and 

low transitions. LibSVM with the RBF Kernel was used to perform the classification in 

both MATLAB and on Android OS 2.3.x devices. 
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3.2 Handbag 

 The Handbag detection algorithm is based on the Front vs. Rear detection 

algorithm, and compares the magnitude of sound generated by the turn signals of the 

car. The inherent assumption is that the driver-side user will place the phone closer to 

the source of the turn signal – namely the dashboard area in front of the driver. This 

proximity generates a distinguishable amplitude difference so that a comparison can be 

made to determine which phone belongs to the driver. The comparison process requires 

the communication of the phones within the car. Rather than using Bluetooth, which 

requires the user to manually enter specific passwords, the Handbag detection 

algorithm uploads the data to a central cloud server, which handles the comparison. 

 The server performs two functions. First, it must match the data it received to 

phones from the same car. Like the Front vs. Rear case, the phones will include their 

rough location, timestamp and accelerometer data to help the cloud server match the 

data it receives. If such a match is not found, the algorithm will determine that the 

phone belongs to a driver with no passenger.  

After the data has been matched to the same vehicle, a band-pass filter is used 

to separate the turn signal sound, which has been empirically observed to occur at 

around 3 kHz. Other sound components such as music and wind noise can still be heard 

in the audio samples after the filtering, but these background sounds are present in 

both the driver and the passenger, and hence should be canceled out in the magnitude 

comparison. The equiripple band-pass filter was designed to sample at 44.1 kHz, has a 

pass-band between 2.95 kHz and 3.05 kHz with stop bands at less than 2.9 kHz and 

greater than 3.1 kHz. The ripple was minimized to 0.0575. The magnitude response of 

the band-pass filter is shown in Figure 4. 

 
FIGURE 4. Band-pass filter magnitude response for Handbag block. 
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3.2.1 Handbag Limitations 

Inherent in the handbag detection algorithm is the variability of where the bag 

might be placed. For example, experimental trials with female users show that female 

drivers tend to place bags in different places depending on the presence of a passenger. 

Without a front-seat passenger, the preference of the driver is to place the bag in the 

front passenger seat. With a front seat passenger, the driver’s bag might be placed next 

to the left leg of the driver, in the center cup holder area, or on the floor behind the 

front seats. In the handbag detection, only scenarios where the phones are still readily 

accessible by the drivers are considered. This limits the driver’s phone to within the 

front seat areas, but does not make such an assumption for the passenger’s phone.  

4 Evaluation 
 The DDS was implemented and evaluated for its accuracy and energy 

consumption. Experimental data collection was done across five distinct users, three 

male and two female, using Android 2.3.x and iOS 4.x devices. The test data were done 

in realistic settings without controlling for the phone’s orientation, the users’ 

movements, and their bag placement preferences. More than 500 unique traces of car 

entry movement were captured for the Car Entry Swing SVM. For the Handbag, more 

than 70 samples of music were collected. To emulate varying level of music and wind 

noise, the samples were taken in with three levels of music (silence, low, high) and 

three speeds of driving (still, low, and high).  

4.1 Car Entry Swing 

 The accuracy of the system is evaluated using cross-validation. The SVM was 

trained using 80% of the total data, and tested for accuracy on the remaining 20%. 

The training data is taken without regards to the user and phone orientations. To help 

remove bias sampling in the randomization, 100,000 of such cross-validations, each 

with a random 80/20 split, were performed, resulting in an average accuracy of 88.99%. 

The resulting CDF of the classification accuracy is shown in Figure 5. 
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FIGURE 5. Car Entry Swing SVM accuracy CDF. 

 

4.2 Handbag 

As mentioned previously, the handbag detection algorithm is limited to scenarios 

where the driver’s phone is placed in the front seat area of the car. Three possible 

cases can arise. In the first case, the passenger’s phone is placed significantly farther 

away from the turn signal source. For example, the drivers’ phones may be placed in 

close to their feet area, while the passengers’ phones are placed in the backseat. This 

case is similar to the Front vs. Rear scenario, which had an accuracy of 95.83%, and 

was not re-evaluated. 

The second case, which was evaluated, is when phones are placed 

approximately the same distance from the turn signal source. For example, both the 

driver and the front passenger place their bag near their respective left legs. To 

evaluate this case, audio samples were collected, filtered and the magnitudes of the 

turn signals were compared. In addition to the variety of background sound levels, the 

system also accounted for the varying levels of thickness of handbags.  

The best case scenario is when the driver’s phone is outside the bag, equating to 

a very thin bag, while the passenger’s phone is inside the bag. This would allow the 

driver’s phone to capture the turn signal without hindrance, while the passenger’s 

phone will almost certainly capture lower amplitudes due to increased distance and 

increased bag thickness. The worst case scenario is the reverse, in which the driver’s 

phone is inside the handbag, while the passenger’s is outside. Evaluation of the best 

case scenario was not necessary since the other three relatively worse cases (D-In, P-In; 

D-Out, P-Out; D-In; P-Out) are sufficient to demonstrate the system’s accuracy. The 

results are shown in Table 3. The headers in the three rightmost columns indicate the 
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location of the phone relative to the bag. Note that an amplitude ratio greater than 1 is 

considered a successful. Based on the result in Table 3, the handbag has an accuracy of 

87.50%. 

TABLE 3. Handbag Algorithm Result 

  Amplitude Ratio (>1 denotes success) 

Music Level Drive Speed D-In, P-In D-Out, P-Out D-In, P-Out 

Low Low 6.23 1.35 1.55 

Low High 1.40 2.23 0.65 

High Low 1.48 1.00 0.05 

High High 1.23 8.25 1.19 

 

Finally, the third case is when the driver’s and passenger’s phones are located 

close to each other. Similar experiments have shown that the algorithm will fail due to 

the proximity of the phones to the turn signal source.  

4.3 Other Detection Blocks 

As mentioned previously, there are several other detection blocks in the DDS. 

While they were not personally evaluate, a brief description of their accuracies will help 

better portray the overall picture of the DDS. The Seat-Belt block, used to detect left vs. 

right movement for the upper body pocket, was ran with 100,000 cross validations and 

resulted in a mean accuracy of 91.08%. The Pedal Press block, used when the phone is 

located in the right pockets of users who entered the car from the driver side, is 

evaluated similarly and has a mean accuracy of 89.78%. Finally, the Front vs. Rear 

block, evaluated similarly to the Handbag block, yielded an accuracy of 95.85%. The 

Front vs. Rear block also contains a matching algorithm to match different audio 

samples to the same car, and demonstrated near 100% accuracy when the 

accelerometer trace lengths were 60 seconds. 

4.4 Overall Accuracy 

TABLE 4. Overall accuracies of the DDS. 

Case Left Vs. Right Algorithm Front vs. Back Algorithm Overall 

Trouser Pocket 88.99% 95.83% 85.28% 
Upper Body Pocket 91.08% 95.83% 87.28% 

Handbag 87.50% 95.83% 83.85% 
Weighted Overall -- -- 84.67% 

 

The overall accuracy of the system depends on the position of the phone and 

how likely the phones are located in each position. Based on data presented in Table 1, 

this was calculated to be 84.67% and summarized in Table 4. For the individual users 
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the accuracies range from 83.85% to 87.28%. The trouser pocket calculation also 

excludes the use of the Pedal Press block, and defaults to the Front vs. Rear block. 

 

4.5 Energy Consumption 

The overall energy consumption of the DDS was evaluated on the Android OS 

2.3.x device, Nexus S, using a power monitor [22] since the battery terminals for the 

iOS devices were not accessible.  

The passive power consumption of the Nexus S was captured over the course of 

10 minutes, and found to be 5.89 mW. Figure 6 shows the power consumption trace for 

the idle case, which contains occasional spikes in power that are likely due to 

background tasks performed by the Android OS. 

 
FIGURE 6. Power consumption trace for idle Android device 

. 

4.4.1 Power Consumption Segments 

Four distinct energy consumption cases, based on the timeline presented in 

section 2.3, were evaluated in order to compute the overall energy consumption. The 

results are summarized below in Table 5.  

TABLE 5. Power consumption data summary. 

Case Power Consumption Max. Energy Consumed 

Idle 5.89 mW N/A 
1 10.39 mW Varies with user 

2 969.09 mW 14.53 J 

3 187.91 mW 43.82 J 
4 947.63 mW 55.22 J 
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In the first case, during which the DDS turns on the phone for 1 second every 

minute to detect walking, the power consumption during that 1 second was 275.87 mW. 

Since this duty-cycled over the course of a minute, the average power consumption 

during this passive phrase is only 10.39 mW, or 4.50 mW above the phone’s idle 

consumption. The total energy consumption in this case would depend on the length of 

the user’s walk. 

In the second case, the phone’s accelerometer, gyroscope and compass will be 

turned on, and the Car Entry SVM and the Seat Belt SVM will be running with a 

maximum timeout of 15 seconds, as outlined in Step 2 of the decision tree. In this case, 

the power consumption is found to be 969.09 mW. Hence, with a 15 second maximum 

timeout, the maximum power consumed is 14.53 J. The power consumption trace file 

for this case is shown in Figure 7.  

 
FIGURE 7. Power consumption trace for the Android device running SVMs and data collection. 

 

In the third case, as outlined in Step 3 in the timeline, the phone will collect 

audio samples for 3 minutes, and upload the data to the cloud server. The power 

consumption for recording the audio was found to be 187.91 mW. We also determined 

the power consumption for uploading approximately 12 kB data, which was found to be 

approximately 10 J over 3G. Changes in file size will not impact power consumption 

significantly since 3G does not turn off instantly after data transfers [25]. The total 

energy consumption in this case was calculated to be 43.82 J. 

Finally, in the last case, the power consumption in Step 3a is measured. In this 

case, the phone is collecting audio data as in the third case, but it is also collected 

accelerometer, gyroscope and compass data, while running the Pedal Press SVM. The 

power consumption during this scenario is 947.63 mW. Note that the Pedal SVM will 

cease to run after 15 seconds, leaving only the audio to run for the remaining 2 
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minutes and 45 seconds. The total energy consumption in this case was found to be 

55.22 J. The power consumption traces for the last two cases are not shown since they 

are similar to the one shown in Figure 7. 

4.4.2 Overall Energy Consumption 

 The overall energy consumption of the DDS will depend heavily on user 

movement pattern. Consider a normal case when the phone is found in the right trouser 

pockets of the driver. Walking is detected within the first minute, and the user walks 5 

more minutes to the car, during which the DDS will consume 275.87 mW, or a total of 

41.38 J. The Car Entry and Seat Belt algorithm will then runs for 15 seconds, 

consuming 14.53 J. The phone then enters case 4 looking for the Pedal Press Signature 

and Front vs. Rear, which consumes 55.22 J. The total energy consumed for this case is 

111.13 J. With the Nexus S’s 5.55 Wh (19,980 J) battery, this represents 0.55% of the 

total battery capacity. 

 The actual battery life reduction will depends on user movement patterns. 

However, since the DDS duty cycles 1 second out of every minute, walks that last less 

than 1 minute will have no impact on battery life. In the worst case that the user is 

continuously walking and never stops, the DDS would consume 16.55 J per minute, 

which would give the Nexus S a battery life of 20.12 hours. This battery life is still 

acceptable for users who charge their smartphones every night. 

5 Discussions 
The DDS presented above demonstrates the power of sensor data and machine 

learning algorithms to infer specific usage patterns and user activities. This section will 

seek to address some of the weaknesses and alternatives to the approach used. 

5.1 Weaknesses 

5.1.1 Vehicle Types 

 The DDS system was only tested in two vehicles – a four-door sedan and a four-

door hatchback, both of Japanese make. Based on observations of car entry to two-

door convertibles and coupes, the DDS should be extendable to accommodate these 

vehicle types trivially. The trouser pocket, upper body pocket and handbag cases all will 

produce similar signatures with smaller vehicles. A potential problem may arise when 

the DDS is used with larger sports utility vehicles or minivans. For the trouser pockets, 

users will still have to enter the car with a step, but they might be stepping up into the 

car, rather than down as in the case with sedans and hatchbacks. This might cause the 
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Entry Swing algorithm to fail, although adjustments to the algorithm to accommodate 

this case will not be difficult since the essential feature, the step, will still be present.  

5.1.2 Assumptions 

The Seat-Belt block within the DDS assumes that all passengers in the car will 

wear a seat belt. We believe it is safe to assume that the driver and front passenger will 

always wear a seat belt, especially if they are concerned enough about traffic safety to 

use the DDS. However, in areas where the rear passenger does not wear seat belts, the 

Seat Belt algorithm will fail, in which case the Front vs. Rear block can be used to 

perform detection of back passengers without the need of the Seat Belt block. 

The DDS design also assumes that at minimum, the driver will have the system 

deployed. In cases where a passenger with DDS enters the car of a driver without DDS, 

the system will still work for the passengers who entered the car from the passenger 

side if the phone is located in the trouser or upper body pockets, since those blocks do 

not require comparison with other phones. However, for the case when the phone is in 

the handbag, or when the rear passenger entered the car from the driver side, DDS will 

not function properly and, by default, will denote the user incorrectly as a driver. 

5.1.3 Other phone positions 

Table 1 show that 8% of cell phone users place their phone on some type of 

belt-enhancements. While DDS does not address this position, the proximity of belt 

enhancements to trouser pockets suggests that modifications can be made to the Entry 

Swing block to incorporate belt enhancements, improving the applicability of the system. 

Another possibility might be that the phone is in the hand of the users during the 

car entry process. This can be easily detected using light and proximity sensors. If the 

phone detects user interaction greater than a threshold timeout after vehicle motion is 

detected, DDS can assume the phone’s user to be the passenger. 

5.2 Other Signatures 

 Other signatures were considered and may be helpful in further increasing the 

accuracy of the DDS. One observation made during lengthy experimental drives is that, 

if the phone is in contact with the driver, the phone experiences lower variance level 

than the passenger’s phone. This is because the operation of a vehicle demands the full 

attention of the driver, who is deliberating controlling the gas pedal with small 

movements, which helps to steady his or her body. On the other hand, the passenger is 

relaxed and will not provide such stability. However, implementation of this algorithm 

would be comparison based, since road conditions and traffic patterns will also impact 
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the variance of the accelerometer. The present, non-comparison based approach was 

chosen due to its flexibility. 

 Another signature explored was the speed bump or pothole signature. This 

signature is based on the intuition that when passing over a speed bump or pot hole, 

the front passenger will experience a larger acceleration as the front wheel passes over 

the obstacle, followed by a smaller acceleration cause by the back wheel. The reverse 

would be true for the passenger in the rear seats. Experimental data collected, however, 

showed that this signature is only detectable when the car is driven at high speed over 

large obstacles, an unlikely scenario. In addition, the algorithm would also fail when 

there are no speed bumps of potholes in the area of the user. 

5.3 Alternatives 

Other methods to realize driver detection are possible, but most involve the 

modification to the vehicle. One such approach incorporates the use of near field 

communication (NFC), which has appeared in the latest generation of smartphones and 

is used in some vehicles to unlock car doors [24]. There are two main issues with using 

the NFC system: only a small fraction of cars deploys such a system, and such driver 

detection systems would only work on with the user’s own car. Another approach 

modifies the car’s speaker to play a specific sequence of sound when the car is first 

started. As with NFC, this approach, requires significant modification to the car and will 

only work with specially modified cars. A third approach uses the pressure sensors on 

the seats of the cars, which is typically use to notify users to wear their seat belts. This 

approach suffers the same issue as the previous two. In addition, since average car in 

the U.S. remains on the road for 9.2 years, it is unlikely that these modifications will 

become practical in the next decade. 

6 Conclusions 
I presented DDS, a system to detect if a mobile phone user is the driver or the 

passenger inside a vehicle. The system allows mobile phones to selectively deliver 

notifications based on available user attention, as well as new, personalized information 

depending on the user’s status. Without the use of external sensors, the DDS design 

shows that the sensor data available are capable of inferring large amounts of 

information from the user. DDS achieves near-practical level of accuracy of 83.85% to 

87.28% for majority of mobile phone users. Its event triggers allows it to operate in an 

energy-efficiency manner with minimal impact to battery life, demonstrating that the 

system is applicable for everyday use. 
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