
Social Network Analysis: Online Anomaly Detection
and Graphical Model Selection

Corinne Horn
Advisor: Rebecca Willett

Senior Thesis for Graduation with Departmental Distinction
Electrical and Computer Engineering, Duke University

April 20, 2011

Abstract
There is a demand for computational methods that can extract meaningful patterns from social

networks in real time. However, these networks can be extremely large and volatile, and brute
force algorithms for high-dimensional data analysis are intractable as high costs and poor run-
time preclude many real-world applications. I present two online (sequentially updating) strategies
that from learn from observations of a network in order to accomplish some task. Furthermore,
both online methods analyze binary data, making them memory-efficient and accommodating to
exceptionally large datasets. One method detects unusual or deviant behavior while utilizing expert
feedback to adjust to a continuously evolving definition of alarming behavior. The second method
learns relationships among individuals (via graphical model selection) that underpin otherwise
indiscernible social patterns. In this paper I primarily focus on my contributions to the two projects.
I applied the theoretical framework from the anomaly detection scheme to two real-world datasets.
Then, after familiarizing myself with relevant literature, I formulated, analyzed, and tested my
graphical model selection algorithm on simulated and real world data.

1 Introduction
The Information Age is characterized by an explosion of large volumes of raw data, particu-

larly data that involves social interactions in large groups. As more information becomes available,
one might ask what useful patterns could be extracted from this influx of data, and is there anything
useful one could learn about a group by observing the individual behavior of its members? The
first examples of large social networks that come to mind are usually websites such as Facebook,
Twitter, and LinkedIn, that aim to form a cyber network amongst users. However, these networking
websites only comprise a tiny fraction of relevant social groups that could be analyzed: interesting
social patterns are likely to appear in the everyday contexts, such as the workplace, politics, traffic

1



patterns, and other substantial situations such as communication patterns among terrorist cells and
rebel groups.

As more of our daily lives are spent on digital devices, it has become increasingly easier to
collect individual behavior for a range of features in a variety of contexts. Most companies have
their own intranet, which collects email communication information for each employee. The gov-
ernment publishes the Senate’s voting records, and Facebook stores the collection of profiles that
have been viewed by every user. Our cellphone history reveals who we communicate with. This
information, if processed effectively, can offer valuable insight to otherwise indiscernible social
patterns that underpin the behavior we exhibit on a daily basis.

There exist a variety of methods for learning useful patterns in datasets. However, there are
a few complications in the social network context that can cause traditional machine learning or
statistical learning approaches to perform poorly. First, social networks can be extremely large,
and brute force algorithms for high-dimensional data analysis are intractable, as high costs and
poor run-time preclude many real-world applications. The analysis tools I discuss in this paper
exploit low dimensional structure intrinsic to systems governed by social behavior. Furthermore,
social relationships can be extremely volatile, so a successful approach needs to accommodate a
dynamic network structure (where the underlying patterns change over time). Provided this setting,
I developed methods that analyze a sequence of observations, and update an appropriate model in
real time. This approach does not analyze a collection of data all at once, but as it becomes
available to the user. Such algorithms are called online methods, and they are useful because they
can be implemented in real-world applications.

I worked with Dr. Rebecca Willett and Dr. Maxim Raginsky to design two methods that
encode complex information into concise, tractable models in order to facilitate the analysis of
real-world social networks. In both projects, the goal was to use high dimensional data to quickly
and accurately update a set of model parameters that balance between previous data and the current
observation. Provided these model parameters, it is possible to identify useful patterns in the net-
work. The first method detects unusual (henceforth referred to as anomalous) behavior by updating
a probability model that represents normal behavior for the entire group, and uses expert feedback
to adapt a threshold for flagging alarmingly deviant behavior. The second method aims to learn
social relationships among individuals by optimizing the parameters for a graphical model that
most likely represents the topology of the social group. I elaborate the mathematical formulation
and analysis of these two projects, as well as describe my contributions in detail, in sections 3 and
4, respectively.

From a high level, both algorithms provide three pieces of information about the state of the
social network at any point in time:
• parameters characterizing a probability model that incorporates all the data up to time t,
• a score for how well the current state of the network fits the estimated model,
• and a worst case guarantee for how well the estimated model could deviate from the true

underlying behavior, provided a reasonable set of assumptions on the structure of the network.
Furthermore, both tools intake data of the same format, and consequently can be applied concur-
rently without additional pre-processing.

In this paper, I will present these two methods as follows: In section 2, I will formalize the
format of input data and justify the assumptions that are imposed on social network characteristics.
In section 3, I briefly outline the theoretical approach to the anomaly detection task and discuss

2



the experimental procedure and results I obtained. In section 4, I will follow an analogous format
to present the model selection method for inferring social relationships, but I further elaborate the
theoretical framework to reflect my level of contribution. Finally, in section 5, I summarize my
findings and suggest future directions for further research. I will formalize mathematical notation
as new terms are introduced.

2 Social Networks in the Online Setting
The goal was to develop methods that would be capable of learning social patterns without

high-computational analysis, such as contextual parsing of messages or monitoring pairwise inter-
actions among group members. Instead, the following methods interpret behavior from a sequence
of binary states of everyone in the social group over time, such as attendance, participation, or
votes. Monitoring binary actions allows the information to be encoded into a p-dimensional vec-
tor, where p is the number of group members, and accommodates exceptionally large datasets that
would otherwise be computationally expensive and/or time consuming to analyze.

Consider a dynamic social network consisting of p individuals where the behavior of every
individual at any point in time is categorized as one of two actions, represented by value of −1 or
1 (I use −1 instead of 0 for mathematical convenience). At time t, I call the p-dimensional binary
vector a co-occurrence xt, where xt ∈ {−1, 1}p. As time evolves I observe new instantiations
x1,...,t of some unknown, underlying process. By analyzing the sequence of co-occurrences over
time, I would like to generate a temporally-evolving model that mostly accurately incorporates all
the data.

The observed behavior of each individual is limited to two actions because it allows for efficient
representation of the state of the network; the co-occurrence for a network with a large dimension p
can be encoded in a p-bit binary vector. Furthermore, this assumption that every individual has one
of two actions available to him is valid in many contexts, such as voting, communication behavior,
and meeting patterns. For example, suppose I wished to monitor communication behavior via
email correspondences. Some computationally intensive approaches might require parsing the text
or monitoring pairwise behavior (such as who emailed whom). However, my approaches extract
information simply by observing which members of the network send or receive an email message
within a particular time period. This example is discussed in further detail in the 3.2 section,
specifically as it relates to my analysis of the Enron email database.

I limit the size of the network to p individuals. This means that new members cannot be
introduced throughout the duration of the analysis. While pmust remain fixed, I place no limitation
on the size of the dimension p itself. In fact, these methods aim to exploit the inherent low-
dimensional structure of social dynamics as a means for efficiently processing large-dimensional
influxes of data.

These methods perform analysis in real time using sequential updates as they become available.
In this online setting, each observation is analyzed one at a time, and the updated model parameters
are calculated from the single observation at time t. Online methods respond in real-time to se-
quential inputs, and offer more flexibility (with little to no total performance trade-off) than batch
methods, which analyze the data all at once. In addition to analyzing real-time data, online meth-
ods are capable of iterating through large, static datasets. In fact, online methods are preferable
for exceptionally large amounts of data as they are memory efficient; this means that they do not

3



require all the information to be stored in memory at once. Online methods are also more readily
adaptable for real-world applications such as video analysis, search engine technology, and data
collection. Such settings are frequent contexts for social behavioral analysis.

3 Anomaly Detection
I first started collaborating with Dr. Willett and Dr. Raginsky as they finalized an online

method for detecting anomalies in social networks by observing a sequence of co-occurrences,
which was a specific application of a theoretical framework they called Filtering and Hedging
for Time-varying Anomaly recoGNition, or FHTAGN. My contributions to this project involved
applying the theoretical framework to real-world datasets, interpreting and displaying the results,
and writing sections of the journal and conference papers. I studied the Enron email corpus (1999-
2002) as well as the comprehensive voting records from the US Senate (2003-2010) as both data
sets embodied long-term behavior of complex social networks with supporting text documents.
For completeness, I present an overview of framework below, then elaborate on my contributions
to the project.

3.1 Outline of Approach
My first task was to familiarize myself with the theory developed so far. Understanding the

motivation for the features in the FHTAGN framework ultimately proved invaluable while I was
working on my own, second research project. In summary, FHTAGN is comprised of two primary
components:
• Filtering: the sequential process of updating beliefs or likelihoods on the next state of the

system based on the observed past.
• Hedging: the sequential process of flagging potential anomalies by comparing the belief against

a time-varying threshold.
Since social networks can be extremely large, the first project aimed to detect anomalies simply

from observing the participants of various forms of communication, as opposed to parsing and
analyzing the content of these communications. In the FHTAGN framework, detecting anomalies
from co-occurrences is a specific case where the model is the product of Bernoulli marginals.

At each time step, FHTAGN observes the state of the system xt and would like to infer whether
xt is anomalous relative to the sequence xt−1 = {x1, ..., xt−1}. This inference is represented by a
binary decision ŷt, where ŷt can either be−1 (implying xt is normal) or +1 (xt is anomalous). The
‘hat’ denotes that the variable is estimated from our framework, as opposed to a true label (which
is represented as yt). In order to predict ŷt, I assign a ‘likelihood’ p̂(xt) that the observation xt was
derived from the exponential family distribution that was generated by xt−1. This likelihood is then
compared to an adaptive threshold τt, which decides how to label ŷt. After predicting the anomaly
label, the decision engine may request expert feedback yt with a probability inversely proportional
to its confidence about its decision, and use that information to adjust its decision-making threshold
τt in the future. Finally, the model parameters are updated using a mirror descent strategy on a
convex hypothesis space to balance between the previous data and the current observation xt. The
process is re-iterated as each new observation becomes available. The method also provides a

4



bound on the worst-case performance compared to any static or time-varying comparator in the
hypothesis set.

The method can be concisely expressed in following algorithm, where η is the learning rate of
the adaptive threshold τt, and C tunes how sensitive the decision-engine is to asking for feedback.

Algorithm 1 Label-efficient anomaly detection [1]
Parameters: real numbers η > 0, C > 0
Initialize: τ1 = 0
for t = 1, 2, . . . do

Observe xt
Compute the estimated likelihood p̂(xt)
if − log p̂(xt) > τt then Flag xt as an anomaly: let ŷt = 1
else Let ŷt = −1
end if
Draw a Bernoulli random variable Ut that inversely depends on the confidence that the label
is correct: Pr[Ut = 1|U t−1] = 1/(1 + C| − log p̂(xt)− τt|)
if Ut = 1 then Request feedback yt and let τt+1 = τt + ηyt
else Let τt+1 = τt
end if

end for

3.2 Experiments
My primary contributions to this project involved applying Algorithm 1 to real-world datasets

and interpreting and displaying the results.

3.2.1 Enron E-mail Dataset

First, I conducted experiments using the Enron e-mail database, which is publicly available at
http://www.cs.cmu.edu/˜enron. This dataset should provide insight because Enrons pub-
licized collapse provides justification for anomaly verification. I used SQL to organize the data
into relevant tables, then printed the information into text files that I loaded in MATLAB. For
each message that was sent within the company’s intranet, I retrieved the recipient’s email address,
sender’s email address, message subject and body (for generating expert feedback), and timestamp.
The Enron corpus consists of approximately 500,000 e-mails involving 151 known employees and
more than 75, 000 distinct addresses, between the years 1999 and 2002.

One problem I encountered was how to partition the data into co-occurrences. One (naive)
option was to consider each thread individually: everyone who participated in a message thread
was deemed active for that thread, and inactive otherwise. There were two dilemmas with this
approach. First, the duration of a thread was never known at any point in time. As a result, the
participants of a thread at time t could be analyzed, but if another employee responded to the
thread at time (t+ 1), the thread was re-analyzed. This was not only redundant, but detrimental to
the performance of the algorithm because it inappropriately weighted certain threads. Furthermore,
spam messages in this setting confused the algorithm, as it would normally expect relatively sparse
observations.

5

http://www.cs.cmu.edu/~enron


My next approach was to partition the data by day. I use email timestamps in order to record
users what were active in each day, either sending or receiving emails. This was done for 1, 177
days, starting from January 1, 1999. This strategy worked relatively well, except that Saturday and
Sunday of every week saw relatively low participation. Consequently, these days were frequent
false alarms. Finally, I consolidated each weekend’s emails into the preceding Fridays observation
vector, resulting in a total of 902 days in the dataset. In this setting, the dimensionality was d =
75, 511.

I used MATLAB to perform Algorithm 1 on this dataset. I had to use trial and error to tune
the feedback parameter C, which adjusted how sensitive the decision engine was in regards to
requesting feedback, as well as the learning rate η to get the optimal performance. Feedback was
requested according to Algorithm 1, and C = 0.0079 and η = 14500 in the results below (Figure
1, and Table 1).

The algorithm relies on infrequent feedback from an oracle so that it can adjust its threshold
decision τ if FHTAGN is assigning incorrect labels. However, there are no definitive labels intrinsic
to this dataset, so I had to devise a method for generating ‘true’ labels that would most likely reflect
unusual behavior within the company. Since this approach analyzes the participants within the
network, I parsed email messages to assign oracle feedback as follows. If feedback is requested
at time t, I generate word count vectors ht using the 12, 000 most frequently appearing words (to
avoid memory issues and misspelled words) for days t− 10, ..., t. Then I average the difference in
word counts between day t and each of previous 10 days to generate an error term et:

et =
1

10

t−1∑
i=t−10

‖ht − hi‖1

where ‖x‖1 =
∑

i |xi| denotes the `-1 norm. When the prediction error et is sufficiently high, I
consider day t to be anomalous according to the expert. Note that this expert only needs to process
a limited amount of data to deliver feedback, thus reducing the total amount of computational
resources needed to open, decrypt, transcribe, or translate documents.

The prediction error et and the threshold τt determining yt is plotted in Figure 1, right bottom,
but note that only a fraction of these values need to be computed to run FHTAGN. A variety of other
expert systems for determining anomalous emails or documents based on their contents could be
used instead of our keyword predictor, and investigating other expert systems could be an avenue
for future research. The results are summarized in Table 1 and Figure 1. As predicted, FHTAGN
performs very well relative to the best static threshold which could be chosen in hindsight at time
T with full knowledge of all filtering outputs and feedback provided to FHTAGN.

As shown in the left plot in Figure 1, the threshold τt adapts to feedback regarding false alarms
and missed anomalies from the oracle. Moreover, some of the true anomalies in this example are
contextual in that they do not always correspond to large likelihood values, but rather to large values
relative to neighboring observations. Letting the threshold τt change over time allows FHTAGN to
adapt to an experts evolving notion of what is anomalous.

The right upper plot of Figure 1 shows the probability of requesting feedback over time and
the days on which feedback is requested; as expected, feedback is less likely when the likelihood
is very far from the current threshold choice τt. There are a total of 91 feedback requests over
902 days, and because of the sliding window used by the oracle to determine the true labels yt,
a total over 523 of the 902 days required text parsing (and, generally speaking, any overhead

6



0 100 200 300 400 500 600 700 800 900
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

t

−
lo

g
p̂

t

 

 

Detection Misses
False Alarms
Correct Anomalies

-log(pt)ˆ

τ

0 100 200 300 400 500 600 700 800 900
0

0.5

1

t

 

 
Probability of requesting feedback
Actual feedback times

e

0 100 200 300 400 500 600 700 800 900
0

2

4

6
x 106

t

t

 

 
Oracle prediction error
Threshold

-lo
g(

p t
)

ˆ

t
t

t

Figure 1: Online anomaly detection results on Enron corpus. Left plot displays filtering output,
locations of missed anomalies (as declared by our expert), false positives, and correctly identi-
fied anomalies, as well as time-varying threshold τt. Upper right plot displays the probability Ut
of requesting feedback, where black circles indicate the locations where feedback was provided.
Lower right plot displays expert prediction error et (from contextual evidence within a 10-day
sliding window) compared to a static threshold to assign yt.

FHTAGN Best static threshold
number of errors 73 143
number of false alarms 35 96
number of misses 38 47

Table 1: A summary of results comparing FHTAGN to the best static threshold.

associated with processing the documents). I researched the most news-worthy events in Enron’s
recent history to see if the method could detect turmoil within the company. In fact, I discovered
that some of the most anomalous events detected by FHTAGN correspond to historical events. For
instance, consider the following occasions:
• Dec. 1, 2000: Days before “California faces unprecedented energy alert” (Dec. 7) and energy

commodity trading deregulated in Congress (Dec. 15). See http://www.pbs.org/wgbh/pages/frontline/shows/

blackout/california/timeline.html.
• May 9, 2001: “California Utility Says Prices of Gas Were Inflated” by Enron collaborator in

El Paso, blackouts affect upwards of 167,000 Enron customers. See http://archives.cnn.com/2001/us/05/

08/calif.power.crisis.02.
• Oct. 18, 2001: Enron reports $618M third quarter loss, followed later by major correction

http://www.justice.gov/enron/exhibit/04-27/BBC-0001/Images/24379.001.PDF.

7

http://www.pbs.org/wgbh/pages/frontline/shows/blackout/california/timeline.html
http://www.pbs.org/wgbh/pages/frontline/shows/blackout/california/timeline.html
http://archives.cnn.com/2001/us/05/08/calif.power.crisis.02
http://archives.cnn.com/2001/us/05/08/calif.power.crisis.02
http://www.justice.gov/enron/exhibit/04-27/BBC-0001/Images/24379.001.PDF


3.2.2 Senate Voting Record

I also ran this algorithm on the US Senate roll call voting records from the 108th-111th
Congress (2003-2010), which are available online at www.senate.gov. Since the data before
2003 was incomplete, I restricted my analysis to the voting record from 2003-2010. The dimension
of the data is 100 Senators voting on a total of 2,429 bills. Each of the bills is put to a vote sequen-
tially, and the votes are recorded as +1 for voting with the majority, and −1 for voting against the
majority. I only collected data from the Senate because Senators serve 6-year terms (compared to
Representatives who only serve 2 year terms) and I wanted to minimize the turnover rate of social
players. I used a perl script to collect the bill number, the date, a brief description, the final result,
and every Senator’s vote. 33% of the seats went up for re-election every 2 years, and there were
141 distinct Senators in the 6 years, 3 month span of the data. For the purposes of this experiment,
I considered the vote as being cast by the seat itself. Therefore, when one Senator replaced another
I considered them the same social character. The dimension of this data set was 100 × 2429, and
the algorithm only took a few seconds to run. This experiment used the same MATLAB script as
the Enron experiment. The results can be seen in Figure 2.

Analysis of the Senate voting records indicated unusual behavior peaking every 2 years in
response to elections, particularly coinciding with the commencement of the Obama administration
in 2008. There is a relatively high average ‘anomalous likelihood’ from 2008-2010, and these bills
correspond the to controversial health care bills.

Using these datasets, I was able to verify the anomalies detected in social network communi-
cations by FHTAGN are indicative of anomalous events of interest to the social network members.

4 Graphical Model Selection
As I grew familiar with techniques from my first research project, I acknowledged a caveat in

the original framework; we modeled the behavior of individuals under the assumption that each
participated independently with identical distribution from our exponential model. However, this
is clearly not the case for social networks, as relationships and internal factors play a large role in
the display of social behavior. Consequently, I conducted my own independent research project to
model these intra-network dependencies under the guidance of Dr. Willett and Dr. Raginsky.

4.1 Problem Formulation
Within a social network, the behavior of one’s acquaintances is likely to influence the behavior

of that individual. I model these relationships using a graph, where vertices represent individuals
and edges represent a relationship, or mutual influence, shared by the two people. My goal is
to learn these relationships from a sequence of co-occurrences, or in other words, to learn the
parameters for a graphical model that embodies the network’s social structure. As before, I assume
the behavior of each individual is restricted to one of two possible actions, so the observation
vector at time t will be of the form xt ∈ {−1, 1}p. This assumption is valid in many contexts, as
discussed before. Additionally, remaining contexts may categorize a collection of behaviors into
two disjoint sets, thereby restricting one’s action to a binary case.

8



1/04 1/05 1/06 1/07 1/08 1/09 1/10
0

100

200

300

Lo
g 

lo
ss

1/04 1/05 1/06 1/07 1/08 1/09 1/10
0

50

100

Se
na

te
 S

ea
t

µ
1/04 1/05 1/06 1/07 1/08 1/09 1/10

0

50

100

Se
na

te
 S

ea
t

Estimated

Observed data

Senate Roll Call Votes 2003-2010

Figure 2: Online anomaly detection results on the Senate roll call record from 2003-2010. The
top plot displays the anomalous likelihood − log p̂(xt) of each vote. The bills with the highest
likelihood are marked with a green tag. The dashed red line represents a turnover in 33% of the
seats. The middle plot displays a graphical representation of the votes. The vertical axis represents
the 100 seats. If a seat voted against the majority at time t, its coordinate it marked with a black
pixel. The bottom plot is a visual representation of the predicted voting behavior for each seat. The
green tags highlight how the actual voting behavior deviated from the expected behavior for those
bills.

As in the previous project, the topology of the network can be dynamic, since it is reason-
able to assume that the mutual influence between pairs of individuals will evolve over time. For
convenience, I call the set of individuals connected to vertex r by an edge on the graph a neigh-
borhood (Nr) for person r. Furthermore, I impose a maximum neighborhood size d such that
d � p, and I assume the behavior of an individual is determined solely from its neighbors and
its own intrinsic properties; the remaining individuals have negligible influence. This assumption
is quite reasonable considering the social context of the problem, and will ensure that the model
parameters θ ∈ Rp×p will be sparse. Sparse models are memory-efficient and reduce computa-
tional complexity in the parameter update step, which is critical for improving an online method’s
performance.

9



In summary, the structure of the network will be encoded in a binary, time-varying, sparse,
online pairwise Markov random field, which in statistical physics is known as an Ising model.
The pairwise Markov random field property is common in statistical analysis of social networks
[2], [3], and it allows the algorithm to predict the behavior of an individual solely from its sparse
neighborhood. This approach exploits the low dimensional structure of Ising models to simply the
computational analysis, even for large datasets. Then, using convex optimization techniques, we
specify an update equation that incorporates the current observation xt into the model parameters
θ with each iteration. The offline (batch) version of this problem has been investigated by Banerjee
et al. [4], Ravikumar et al. [5], and Hofling and Tibshirani [6]. Finally, the ultimate goal is to
obtain performance guarantees for how well this method will perform against any time-varying
strategy.

4.1.1 Ising Models

An Ising model consists of a set of vertices V = {1, ..., p} and edges E = Θαβ for α, β = 1...p.
In the social network setting, the vertices represent the set of individuals and the behavior of
person i at time t is represented by the binary status of the vertex (xt)i ∈ {−1, 1}. For notational
convenience, we assume that the time dependence on x will be defined by context, so I will use
the notation xi = (xt)i. I represent the mutual influence of one person α with another person β
by a signed, undirected edge θα,β . The structure of this graph exhibits conditional independence
assumptions among the nonzero subsets of the sequential p-dimensional discrete random variables,
and ensures sparsity on the edge set. For an Ising model with a known set of parameters θα,β , the
state of the network x = (xα : α ∈ V) is given by the probability distribution function:

Pθ(x) =
1

Z(θ)
exp

[∑
α,β∈V

θαβxαxβ

]
. (1)

In our formulation, the p × p matrix θ = (θαβ)α,β∈V is symmetric (θαβ = θβα) and if θαβ = 0
then person α possesses no influence over the behavior of person β. Otherwise, the correlation of
behavior between a pair of individuals can either be positive or negative, and vary in magnitude as
indicated by the edge between the pair of vertices. The function Z(θ) is the partition function and
ensures the distribution sums to 1.

My goal is to update θ for every time step; therefore I denote the edge set for my model at
time t as θ̂t. Ideally, I would update θ̂t by optimizing (1) over all parameters θ ∈ Θ in some
hypothesis class Θ. The problem of undirected graphical model selection for discrete variables
has attracted considerable attention because of the complication arising from typical evaluation
metrics. Optimal models are selected on the basis of having the highest probability given the data,
therefore all possible graphical structures must be considered. However, the number of graphical
structures grows exponentially. Furthermore, computing the log partition function for any structure
within an optimization routine would require summing over 2p possible configurations of x for each
possible θ, which is intractable. To sidestep this problem, I proposed extending an idea presented
by Wainwright [5] to the online domain, where the simultaneous consideration of individual nodes
conditioned on their nonzero neighbors constitutes a pseudo-likelihood metric for any graphical
configuration. For any vertex r ∈ V and any edge set θr ∈ Rp connected to r, the probability that

10



xr = +1 is approximated (using the Markov property) by the behavior of the remaining nodes x\r:

Pθr(xr|x\r) = Pθr(xr|xN(r)) =

exp

2xrθrr + 2
∑
s∈N(r)

θrsxrxs


exp

2xrθrr + 2
∑
s∈N(r)

θrsxrxs

+ 1

(2)

Finding θr that maximizes (2) is a logistic regression problem. Furthermore, I assume that the
neighborhood N(r) is small with a maximum of d elements, so the calculation complexity is
further reduced.

4.1.2 Minimizing the Loss

Now I need a method for quantifying how well a graphical model fits the previous data. Define
the data fit term f̃t,r(x; θr) of vertex r as the negative log of the likelihood function described in
(2):

f̃t,r(x; θr) = − log (Pθr(xr|x\r))
= −2θrrxr − 2

∑
s 6=r

θrsxrxs + ϕt,r(x; θr)

where

ϕt,r(x; θr) = log

[
exp

(
2θrrxr + 2

∑
s 6=r

θrsxrxs

)
+ 1

]
. (3)

Since− log (x) is a convex function, f̃t,r(θr) is a convex function with respect to θ. To evaluate the
likelihood of the entire graphical model for a parameter set θ ∈ Rp×p, I sum the pseudolikelihoods
over all p nodes to get the loss function associated with our parameter set θ at time t:

ft(x; θ) =

p∑
r=1

f̃t,r(x); θr) =

p∑
r=1

[
−2θrrxr − 2

∑
s 6=r

θrsxrxs + ϕt,r(θr)

]
. (4)

From this point forward, I will express ft(x; θ) as ft(θ) for notational convenience. If I did not
assume θ was sparse, it would suffice to find the next parameter θ̂t+1 by applying online optimiza-
tion algorithms to the function ft(θ). However, I would like to impose sparsity on the parameter
set θ. A common approach is to add a penalty regularization term to the minimization problem, as
it usually causes small elements in θ̂t to drop to 0. The problem now takes the composite function
ft(θ) + r(θ) as input to the optimization.

Since the pseudo-likelihood is convex, I could use one of a variety of online convex program-
ming techniques available in the literature. My first attempt was to use a method developed by
Langford et al. called the Truncated Gradient [7]. This optimization approach uses a combina-
tion of shrinking and thresholding every K rounds after performing gradient descent, as shown in
Algorithm 2.

11



Algorithm 2 Regularized Online Learning via Truncated Gradient

Initialize θ̂1 ∈ Rp×p = 0
for i = 1, 2, ... do

Acquire new observation xi and incur the loss `i(θ̂i) = fi(θ̂i) + r(θ̂i)

Compute gi(θ̂i, xi) = ∇1`i(θ̂i), a subgradient of `(θ̂i) w.r.t. the first variable.
Update via gradient descent: θ̂i+1 = θ̂i − ηgi(θ̂i, xi)
Perform Truncation:
if mod (i,K) = 0 then

θ̂i+1 = T (θ̂i, ηgi, ω) =


θ̂i+1 if |θ̂i+1| ≥ ω

θ̂i+1 − ηgi(θ̂i, xi) if ηgi(θ̂i, xi) < θ̂i+1 < ω

0 if |θ̂i+1| ≤ ω

θ̂i+1 + ηgi(θ̂i, xi) if − ω < θ̂i+1 < −ηgi(θ̂i, xi)
end if

end for

I saw good results in the experiments, but their technique for bounding the performance of
this method was not easily adaptable to the time-varying case. Since I was primarily interested
in tracking the performance for a dynamic system, I next considered a regularized dual averaging
(RDA) method presented by Xiao [8]. The idea behind RDA is that the update step depends on an
averaged arbitrary subgradient of the likelihood function, which lives in a dual space. This method
performs well in a variety of settings, but it also was hard to prove any performance bounds in
the time-varying case. A slight variation of RDA is called Composite Objective Mirror Descent
(COMID), and was developed by Duchi [9]. This was the optimization strategy I used in my time-
varying performance analysis and experiments. Since this optimization method is critical to my
analysis, I describe Mirror Descent and Composite Objective Mirror Descent (Algorithm 3) briefly
in the following section.

4.1.3 Composite Objective Mirror Descent

The Mirror Descent algorithm (MD) [10], [11] is an iterative method for optimizing a convex
function ` : Θ→ R. Using Mirror Descent, it is possible to tightly bound a term called the regret,
defined as

RT (θ̂t; `) =
T∑
t=1

`t(θ̂t)− inf
θ∈Θ

T∑
t=1

`t(θ) (5)

where {θ̂t} is the sequence generated by mirror descent, `t are convex functions, and Θ is the
convex set of possible parameters. The concept of regret is elaborated in section 4.1.4.

I would like to generalize the mirror descent algorithm to the case where `t is composed of loss
function ft and a sparsity-inducing penalty term r, so that `t = ft + r. ft is allowed to change over
time but the regularizer r remains constant. Performing MD on the composite function `t can lead
to poor performance; in the case when r = ‖ · ‖1, MD does not directly lead to sparse updates [9].
Instead I follow the Composite Objective Mirror Descent strategy, where the name comes from the
fact that I am attempting to minimize a composite objective function. In short, I perform MD on ft

12



with the regularizer term only added to the update equation. This can also be viewed as performing
MD on `t but without linearizing the regularizer r, and leads to the following update equation:

θ̂t+1 =arg min
θ∈Θ

η〈f ′t(θ̂t, θ)〉+Bψ(θ, θ̂t) + ηr(θ). (6)

where f ′t(θ) denotes an arbitrary subgradient of ft at θ, Bψ is the Bregman divergence, and the
step size η controls the trade-off between the minimization of the first order approximation of `t
at θ̂t, and forcing the next update θ̂t+1 to lie close to θ̂t. Throughout, ψ designates a continuously
differentiable function that is α-strongly convex w.r.t. a norm ‖ · ‖ on the set Θ. The Bregman
divergence associated with ψ is

Bψ(θ1, θ2) = ψ(θ1)− ψ(θ2)− 〈∇ψ(θ2), θ1 − θ2〉,

and satisfies Bψ(θ1, θ2) ≥ α
2
‖θ1− θ2‖2 for some α > 0. A vector f ′t(θ) ∈ Rp is a subgradient of ft

at θ if for all θ̄ ∈ domft, ft(θ̄) ≥ ft(θ) + 〈f ′t(θ), θ̄ − θ〉. If ft is differentiable and convex, then its
gradient is its subgradient. Convex functions that are nondifferentiable have a set of subgradients
that lie tangent to the curve, but do not intersect the curve at any other point. Algorithm 3 outlines
the general COMID approach.

Algorithm 3 Regularized Online Learning via Composite Objective Mirror Descent
Parameters: Choose a non-increasing ηt > 0, a continuously differentiable function ψ(·) that
is α-strongly convex w.r.t. a norm ‖ · ‖, and a regularizer r(·).
for i = 1, 2, ... do

Acquire new observation xi and incur the loss `i(θ̂i) = fi(θ̂i) + r(θ̂i)

Compute gi(θ̂i) = ∇1`i(θ̂i), a subgradient of `i(θ̂i).
Update θ̂i by solving

θ̂i+1 =arg min
θ∈Θ

η〈gi(θ̂i), θ〉+Bψ(θ, θ̂i) + ηr(θ).

end for

4.1.4 Regret Bounds

Now, I focus on bounding the performance of COMID when the true, underlying model is
allowed to vary with time. The goal is achieve low regret w.r.t. a time varying comparator θt =
{θi}i=1...t where θi ∈ Rp×p. With every round of the online optimization I compute the regularized
regret against θt, defined as

RT (θ̂t, θt) =
T∑
t=1

(
ft(θ̂t) + r(θ̂t)− ft(θt)− r(θt)

)
. (7)

First, I bound the the behavior of `t = ft + r for each time step in the algorithm. I then use the
results to bound the regret RT for any time-varying comparator.

13



Lemma 1 (Progress bounds for each step of algorithm, from Duchi’s Lemma 1 [9]) Let {θ̂t} be
defined using the update equation (6). Assume that Bψ(·, ·) is α strongly convex w.r.t. a norm ‖ · ‖.
Then for any θ ∈ Θ and any regularizer term r(θ) we have

ft(θ̂t)− ft(θ) + r(θ̂t+1)− r(θ) ≤ 1

η

[
Bψ(θ, θ̂t)−Bψ(θ, θ̂t+1)

]
+

η

2α
‖f ′t(θ̂t)‖2

∗ (8)

where ‖ · ‖∗ is the dual norm. For any norm ‖ · ‖, the associated dual norm ‖ · ‖∗ is defined as

‖z‖∗ = sup{zTxmax ‖x‖ < 1}.

Lemma 1 gives a worst case difference between the loss of an estimated model, `t(θ̂) and the loss
of any other model θ is our hypothesis set Θ. This bound only holds for one point in time, but I
am interested in the difference between the sequence of estimated models, and any time-varying
comparator over all time.

Define the cumulative loss

L(θ, T ) ,
T∑
t=1

ft(θt) + r(θt)

and let

VT (θ) ,
T∑
t=1

‖θt − θt+1‖ (9)

be the variation of the time-varying comparator θ.

Theorem 1 (Regret against time varying strategies) Let {Θi}i=1,...,t be a sequence of closed con-
vex sets, and let θ̂ be the sequence of parameters computed using the update in (6) with ηt = 1/

√
t.

Then, for any sequence θ = {θi}i=1,..,t in {Θi}i=1,...,t

Lθ̂,T (xT ) ≤ Lθ,T (xT ) +D
(

1 +
√
T + 1

)
+ 4M

√
TVT (θ) +

G2

2α

(
2
√
T − 1

)
. (10)

where G , maxθ∈Θ,f∈F ‖ft(θ)‖∗, M , 1
2

maxθ∈Θ ‖∇ψ(θ)‖, D , maxθ,θ′∈ΘBψ(θ′, θ).

Proof: This proof follows the proof of Theorem 2 in FHTAGN [1]. Applying Lemma 1 to
`t(·), write

ft(θ̂t) + r(θ̂t+1) ≤ ft(θt) + r(θt) +
1

ηt

(
Bψ(θt, θ̂t)−Bψ(θt, θ̂t+1) + Γt

)
+
ηt
2α
‖f ′t(θ̂t‖2

∗

Adding and subtracting Bψ(θt+1, θ̂t+1) inside the parentheses and rearranging gives us

ft(θ̂t) + r(θ̂t+1)− ft(θt)− r(θt)

≤ 1

ηt

(
Bψ(θt, θ̂t)−Bψ(θt+1, θ̂t+1) + Γt

)
+
ηt
2α
‖f ′t(θ̂t‖2

∗

≤ ∆t −∆t+1 +

(
1

ηt+1

− 1

ηt

)
Bψ(θt+1, θ̂t+1) +

1

ηt
Γt +

ηt
2α
‖f ′t(θ̂t‖2

∗

≤ ∆t −∆t+1 +

(
1

ηt+1

− 1

ηt

)
D +

1

ηt
Γt +

ηt
2α
‖f ′t(θ̂t‖2

∗

14



where I have defined ∆t = (1/ηt)Bψ(θt, θ̂t) and Γt = Bψ(θt+1, θ̂t+1) − Bψ(θt, θ̂t+1). Next, I take
a look at Γt:

Γt = ψ(θt+1)− ψ(θ̂t+1)− 〈∇ψ(θ̂t+1), θt+1 − θ̂t+1〉 −
[
ψ(θt)− ψ(θ̂t+1)− 〈∇ψ(θ̂t+1), θt − θ̂t+1〉

]
= ψ(θt+1)− ψ(θt) + 〈∇ψ(θ̂t+1), θt − θt+1〉
≤ 4M‖θt − θt+1‖.

Combining everything and summing from t = 1 to t = T , I get
T∑
t=1

[ft(θ̂t) + r(θ̂t+1)]−
T∑
t=1

[ft(θt) + r(θt)]

≤
T∑
t=1

(∆t −∆t+1) +
T∑
t=1

(
1

ηt+1

− 1

ηt

)
D + 4M

T∑
t=1

1

ηt
‖θt − θt+1‖+

T∑
t=1

ηt
2α
‖f ′t(θ̂t)‖2

∗

≤ ∆1 −∆T+1 +

(
1

ηT+1

− 1

η1

)
D +

4M

ηT
VT (θ) +

G2

2α

T∑
t=1

ηt

≤ D +D
√
T + 1 +

4M

ηT
VT (θ) +

G2

2α
(2
√
T − 1).

where in the last time, I used the estimate
∑T

t=1 t
−1/2 ≤ 1 +

∫ T
1
t−1/2dt = 2

√
T − 1.

Theorem 1 provides a worst case bound for the regret against any strategy, which is a power-
ful result. The tightness of this bound depends primarily on the choice of Bregman divergence.
However, the question of how to choose the best Bregman divergence remains an open question.
Surprisingly, this bound for the regret does not depend on the regularizer term r(θ) and it is sublin-
ear with T if the variation VT (θ) of the comparator is held constant. These results are comparable
to the regret against static comparators of other online prediction strategies in the literature. How-
ever, our method has the added benefit of being able to track the dynamic comparator, and it is
possible to show that this regret RT (θ̂,θ) ∼ O(

√
TVT (θ)).

4.2 Derived Algorithm
In this section, I show how a specific instantiation of the framework is used to generate an

algorithm for online updates of the Ising model. The squared Euclidean norm is an α-strongly
convex Bregman divergence when α = 2, so the dual norm ‖ · ‖∗ = ‖ · ‖2

2 is also the squared
Euclidean norm. If I let r(θ) = ‖θ‖1 and ηt = 1√

t
, then I obtain the following optimization

problem:

θ̂t+1 =arg min
θ∈Θ

ηt〈f ′t(θ̂t), θ〉+ ‖θ‖2
2 − ‖θ̂t‖2

2 − 〈2θ̂t, θ − θ̂t〉+ ηt‖θ‖1.

This problem reduces to n independent scalar minimizations, and the jth minimization can be
expressed in closed form as

θ̂jt+1 =

{
0 if ‖ηtgjt − 2θ̂jt‖ ≤ ηt
−1

2
(ηtg

j
t − 2θ̂jt )− ηtsgn(ηtg

j
t − 2θ̂jt ) else

(11)

15



This update method for this derived case is shown in Algorithm 4, and this is the algorithm I used
in the experiments in section 4.3.

Algorithm 4 COMID Using the Squared Euclidean Norm and L1 Regularization
Parameters: Choose a non-increasing ηt > 0.
for i = 1, 2, ... do

Acquire new observation xi and incur the loss `i(θ̂i) = fi(θ̂i) + r(θ̂i)

Compute gi(θ̂i) = ∇1`i(θ̂i), a subgradient of `(θ̂i, xi).
for j = 1,2, ..., p do

θ̂ji+1 =

{
0 if ‖ηigji − 2θ̂ji ‖ ≤ ηi
−1

2
(ηig

j
i − 2θ̂ji )− ηisgn(ηig

j
i − 2θ̂ji ) else

end for
end for

For this derivation of COMID, D = 4pd, α = 2, G = 2p,M = pd. Therefore

ft(θ) =

p∑
r=1

[
−2

(
θrrxr +

∑
s 6=r

θrsxrxs

)]
+

p∑
r=1

ϕt,r(θr)

≤ 2dp+ p log (e2d + 1),

so G = p(2dp + p log (e2d + 1))2. Therefore, according to Theorem 1, the regret for a fixed
horizon T for θ̂ = {θ̂i}i=1,...T computed by Algorithm 4 against any time-varying comparator
θ = {θi}i=1,..,t in {Θi}i=1,...,T is bounded by

RT (θ̂,θ) =
T∑
t=1

[
Lθ̂,T − Lθ,T

]
≤ 4pd

(
1 +
√
T + 1

)
+ 4pd

√
TVT (θ) +

2p2

α

(
2
√
T − 1

)
.

The updates in Algorithm 4 are special cases of other methods as well. In the case of this derivation,
COMID reduces to a method developed by Duchi and Singer called FOBOS [12], as well as a
special case of the Truncated Gradient (Algorithm 2) with K = 1 and ω = ∞. Despite this
particular algorithm’s appearance in the literature, to the extent of my knowledge it has only been
derived and bounded, but not tested on simulated or real world data. For this reason, I used it in
my experiments. However, I did encounter a problem implementing this method, which I elaborate
below.

4.3 Experiments
In this section, I provide both simulations on synthetic data, as well as computational experi-

ments on the Senate voting record. The purpose of these experiments is to illustrate how well this
method estimates relationships between members of a dynamic social network.

16



4.3.1 Simulations

To generate data, I created what would henceforth be considered the true, time-varying under-
lying edge set θ∗t , where at any point in time, θ∗t ∈ [−1, 1]p×p is sparse and symmetric with at most
d nonzero elements in each row or column. I limited this simulation to the case where every entry
lies on the interval [−1, 1], but this is done without loss of generality since a finitely sized matrix
must have bounded elements, and it is possible to scale θ∗t to accommodate any range.

I performed experiments on two slightly different simulated datasets. The first had the fol-
lowing dimensions: p = 100, d = 5, and n = 1500. The true model θ∗t was randomly assigned
nonzero entries while symmetry and sparsity were imposed. θ∗t was static except for three jumps
at t = 400, 700, and 1200. At these 3 jumps, the old parameters were thrown out and a completely
random (under appropriate conditions) model was generated. The second model exhibited a sys-
tematic lattice structure that could be easily compared to the estimated model by the naked eye. It
had dimension p = 100, d = 5, and n = 500, with one jump at t = 250. At this jump, the model
deviated from a lattice with predictable, alternating values to a lattice with random values.

I then used Gibbs sampling to generate the data from the Markov random field until there
was less than 1% deviation. I repeated the Gibbs sampling method for each observation vector
x1, ..., xn for the two models, and repeated the whole process 10 times so I could average my
results. Generating the data took approximately 150 hours with a 2.4 GHz Intel Core 2 Duo
processor.

Using MATLAB, I applied the COMID Algorithm 4 to both datasets, and averaged the results
over 10 runs. However, I noticed a problem in the simulations; if one vertex in the graph became
completely isolated, the thresholding rule would prevent that vertex from reconnecting with any
other node for the duration of the experiment. As a result, most runs returned θ̂t empty. In the
case where I chose r(θ) = ‖ · ‖1 as the `-1 norm, and the Bregman divergence to be the squared
Euclidean norm ‖·‖2

2, it just so happened that the argument minimization problem could be optimal
when θ̂t is 0, unless f ′t(θ̂t) and ηt are carefully chosen to follow certain constraints.

However, getting a solution of θ̂t = 0 for all t is uninteresting, even if it satisfies the regret
bounds in Theorem 1. Since I applied this method several datasets, and I did not want to waste the
computational power to find the perfect values for f ′t(θ̂t) and ηt. Furthermore, if a vertex did come
completely isolated, I did not necessarily want it to remain as such. As a result, I only performed
truncation/shrinkage according to (11) every K = 20 rounds so that elements of θ̂t could grow
above the threshold and remain nonzero. This insight comes from Langford’s truncated gradient
framework [7]. Figure 3 are results from this improved algorithm on the large, random dataset.

I used ηt = 1/
√
t. This sequence of values for ηt was useful for proving the theoretical bounds,

but in the simulations I noticed that the updated estimate θ̂t responded increasingly slowly to un-
derlying changes as time progressed. I suspect using a constant value for η would be appropriate
for models that are expected to vary as t increases. Otherwise, observations for large t would have
relatively minimal effect. I applied the same algorithm to the lattice-structured model, as shown in
Figure 4. The comparison between θ∗t and θ̂t is much easier to verify as a recognizable shape.

To quantitatively compare the results for both datasets, I computed a difference matrix θ̂t − θ∗t
(where t = 1190 and 240 for the large and lattice datasets respectively), and counted the number of
entries whose absolute value was less than a certain error threshold σ. This was the metric I used
for evaluating how well Algorithm 4 recovered θ∗t for the two datasets, and Table 2 summarized
the percent correct versus error threshold σ for each of the two datasets at times t = 1190 and 240,

17



Figure 3: The bottom plot tracks the Euclidean distance between the true model (of edges charac-
terizing the social structure) and the estimated model, also shown in the upper left plot. The large
jumps at t = 400, 700, and 1200 reflect the sharp variation in θ∗t at those locations. The top two
plots display a visual representation of the two p × p dimensional models at t = 1190. θ̂1190 (top
right) has been iteratively updated with each new {xt}t=1,...,1189 to estimate θ∗1190 (top left). The
method was successful at recovering a majority of the nonzero features.

respectively.

Error Threshold σ
0.5 0.4 0.3 0.2 0.1 0.05

Large (n = 1500) 99.95% 99.81% 99.43% 96.77% 80.16% 53.43%
Lattice (n = 500) 96.92% 96.18% 95.74% 95.10% 87.05% 66.56%

Table 2: This table provides the percent of θ∗ recovered by θ̂ for a given error threshold σ for the
simulated experiments.

In the simulations, I did not compare the regret to the upper bound I derived in section 4.1.4.
This is because the dimensionality was relatively small, with an easy-to-learn underlying model
so the upperbound of the regret was grossly overestimated. Furthermore, the true model θ∗ does
not, in reality, optimize the regularized loss. The penalty term acts to induce sparsity, but some
estimates that are more sparse than θ∗ will have a lower loss than the model that generated the data,

18



Figure 4: This bottom figure tracks the Euclidean distance between the true model (of edges char-
acterizing the social structure) and the estimated model, also shown in the upper left figure. The
jump at t = 250 reflects the sharp variation in θ∗t at that location. The two upper figures are a
visual representation of the two models at t = 240. θ̂240 (top right) has been iteratively updated
to estimate θ∗240 (top left). It is quite easy to see that the method was successful at recovering a
majority of the nonzero features.

providing a negative ‘regret’. This was often the case in these simulations.

4.3.2 Senate Voting Record

I conclude my experiments by testing my derivation of COMID on the US Senate roll call vot-
ing records from the 108th-111th Congress (2003-2010). The details of this dataset were discussed
in section 3.2.2.

First, I applied Algorithm 4 with η = 1/
√
t to the sequence of binary data, and observed the

evolution of social dynamics as revealed by the system in Figure 5. The loss function for the
estimated model is shown in the top plot. As expected, the loss decays as more bills are analyzed,
but there are small increases every 2 years when 33% of the seats are replaced, as indicated by the
red dashed lines. First, I ran the algorithm and could make little sense of the results, which looked
like an erratic checkerboard (bottom left plot in the figure).

Next, I reorganized these results by political party affiliation. I moved all of the Independents

19



Figure 5: The top plot shows the loss for the estimated model θ̂t. The middle plot ordered the
axes by state, with the two senators from each state numbered consecutively. The right most
plot separates senators by party affiliation: Democrats are assigned low index seat numbers, and
Republicans are assign high index seat numbers. Members of the same party tend to share positive
mutual influences, while Senators from different parties tend to exhibit a negative influence.

to the lowest seat indexes, then Democrats to the lower-middle seat indexes, and Republicans to
the higher seat indexes. It is clear that members of the same political party are more likely to share
a positive mutual influence, while Senators with associated with different parties are more likely
to exhibit a negative influence. This re-ordering seems to make order out of chaos, and is shown in
the lower right plot.

There are two Senators for which the relationships seem unexpected in the lower right plot.
The first is Joe Lieberman from Connecticut at index 6, and the second is Dianne Feinstein from
California at index 48. Based on this model, we can infer that Lieberman’s voting habits are
minimally influenced by the voting behavior of the remaining Senators, while Feinstein’s habits
appear to be more congruent with Republicans. This analysis offers insight to how an individual
actually votes, regardless of their political affiliation.

5 Conclusions and Future Work
In the paper, I presented two different online methods for finding patterns in social networks

from high-dimensional, binary co-occurrence data. The first framework, called FHTAGN, detects
anomalous or unusual behavior relative to previous observations by (1) filtering the current value,
or computing its likelihood given the previous data, (2) hedging, or comparing this likelihood
against a feedback-adaptive threshold, and (3) updating the exponential family probability distri-

20



bution via primal-dual updates to balance between the old and new data. While I was minimally
involved in the framework design and analysis, I applied the algorithm to Enron e-mail database
and Senate voting record, interpreted the results, and wrote sections of the journal and conference
papers. To collect and pre-process the data, I utilized languages such as Perl and SQL. Once I
formatted the datasets, I applied FHTAGN using MATLAB. Working on this project introduced
me to the process of problem formulation, analysis, finding performance guarantees, and experi-
mentation that characterizes this field of research.

Once I became slightly more familiar with the research process, I started my own research
project under the guidance of Drs. Willett and Raginsky. My goal was to learn the structure of
social relationships underpinning observable behavior in a social group by iteratively updating
an Ising model using online convex programming techniques. Having reviewed the literature, I
formalized and justified my assumptions, attempted to extend various existing methodologies to
the online Ising model problem, proved how well my framework would perform against any time-
varying comparator, and performed simulations and experiments to investigate its implementation
in simulation and real datasets.

Despite the work I have accomplished, there still remain issues I would like to address in the
future. First and foremost, I would like to address my problem of selecting a poor combination
of Bregman divergence and a regularization term. Provided the time, I would research how others
approached this problem (preliminary investigation revealed that most scientists did not perform
experiments for this derivation, and simply included the update steps). I would also choose dif-
ference Bregman divergences and/or regularization penalties to derive alternative algorithms, and
compare their performance.

I would also generate more simulated data with higher dimensionality p and a longer obser-
vation period n, so that regret analysis would be nontrivial (at least the simulated regret was well
within the limit). Real world datasets provided limited insight to the behavior of regret because
there is no true, underlying model with which to compare. I would also hope to find a way to
interpret COMID’s results on an extremely large dataset like the Enron e-mail database, where the
social relationships are hard not already known and would need to be justified.

Finally, a more general question would be how to pick a regularizer term for a specific problem,
and how it would affect any method’s performance. There is currently a lot of trial and error to the
science of selecting a regularizer that performs well in experiments. This question is large enough
to be a completely new project.

5.1 Acknowledgements
I would like to thank Drs. Rebecca Willett and Maxim Raginsky for their support, guid-

ance, and mentorship through these projects, and for their patience and invaluable feedback as
I worked to become a effective researcher. I would also like to thank the members of the Net-
working and Imaging Sciences Lab for accepting me into their research group and engaging me
in helpful discussions. Finally, I would like to thank Dean Absher and the Pratt Undergraduate
Research Fellowship Program for introducing me to these exciting projects, and for providing me
the opportunity and funding to conduct rigorous research as an undergraduate student.

21



References
[1] M. Raginsky, R. Willett, C. Horn, and R. Marcia, “Sequential anomaly detection in the presence of

noise and limited feedback,” Submitted, 2010.

[2] O. Frank and D. Strauss, “Markov graphs,” Journal of American Statistics Society, vol. 81, no. 395,
pp. 832–842, 1986.

[3] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi, “A survey of statistical network
models,” Foundations and Trends in Machine Learning, vol. 2, no. 2, pp. 1–117, 2009.

[4] O. Banerjee, L. El Ghaoui, and A. d’Aspremont, “Model selection through sparse maximum likelihood
estimation for multivariate guassian or binary data,” Journal of Machine Learning Research, vol. 9,
pp. 485–516, 2008.

[5] Pradeep Ravikumar and Martin Wainwright, “High dimensional ising model selection using l1 regu-
larized logistic regression,” Annals of Statistics, 2000.

[6] H. Hofling and R. Tibshirani, “Estimation of sparse binary pairwaise markov random fields,” Annals
of Statistics, 2009.

[7] John Langford, Lihong Li, and Tong Zhang, “Sparse online learning via gradient descent,” Journal of
Machine Learning Research, vol. 10, pp. 777–801, March 2009.

[8] Lin Xiao, “Dual averaging methods for regularized stochastic learning and online optimization,” Jour-
nal of Machine Learning Research, vol. 11, pp. 2543–2596, March 2010.

[9] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari, “Composite objective mirror
descent,” in Conference on Learning Theory, 2010.

[10] A. Nemirovsky and D. Yudin, Problem complexity and method efficiency in optimiztion, Wiley, 1983.

[11] Amir Beck and Marc Teboulle, “Mirror descent and nonlinear projected subgradient methods for
convex programming,” Operations Research Letters, vol. 31, pp. 167–175, 2003.

[12] John Duchi and Yoram Singer, “Efficient online and batch learning using forward backward splitting,”
Journal of Machine Learning Research, vol. 10, pp. 2899–2934, 2009.

22


	Introduction
	Social Networks in the Online Setting
	Anomaly Detection
	Outline of Approach
	Experiments
	Enron E-mail Dataset
	Senate Voting Record


	Graphical Model Selection
	Problem Formulation
	Ising Models
	Minimizing the Loss
	Composite Objective Mirror Descent
	Regret Bounds

	Derived Algorithm
	Experiments
	Simulations
	Senate Voting Record


	Conclusions and Future Work
	Acknowledgements


