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1. Abstract 

We have developed Argus-G, a low-cost error detection mechanism for the SIMT cores found in 

GPGPUs. As GPUs make the transition into general purpose computing, detecting errors and 

dealing with them will become a more pressing issue. General purpose graphics processing units 

are increasingly used for scientific computing, where errors, if not detected, can significantly 

distort the results of these scientific simulations. Argus-G is an adaptation of the Argus error 

detection scheme for general purpose cores that has been tailored for GPUs. Our experiments 

show that, on average, our implementation incurs a 4% overhead in runtime and a 10% increase 

in the number of instructions executed.  
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2. Introduction 

As GPUs complete their transition into the general purpose computing space, detecting errors 

and dealing with them will become a more pressing issue. Due to technology scaling, transistors 

have been decreasing in size, thereby increasing the chance of faults developing [6]. In addition, 

the die sizes of GPGPUs have been increasing.   Having a greater number of smaller transistors 

increases the probability of a transient or a permanent fault.  

In the past, when GPUs were primarily used for graphical applications, there was no demand for 

error detection mechanisms. At the worst, an error would affect a pixel or two on the screen. But, 

since GPUs have now transitioned into the general purpose computing space, including high 

performance scientific computing, faults can significantly distort the results of the scientific 

simulations run on these systems. Thus, error detection for General Purpose GPUs (GPGPUs) is 

now a pressing concern for architects. To the best of our knowledge, the only scheme that is 

currently in use, or that has been suggested, is the one provided by Nvidia on the Fermi series on 

GPGPUs. Nvidia uses Error Correcting Codes [21] (ECC) to detect and fix soft errors in the 

register files and the memory system. However, ECC does not detect errors in the logic, 

including the numerous functional units and control logic.  

In order to remedy this problem, we propose Argus-G, an error checking mechanism designed 

for the Single Instruction Multiple Thread (SIMT) cores present in the current generations of 

Nvidia and ATI GPGPUs. Argus-G is an implementation of the Argus [16] error detection 

scheme, adapted to be compatible with SIMT cores. Argus-G detects errors in the computation of 

results [27, 22, 23, 18], control flow [6, 12, 28] and the data flow [15] of programs run on 

GPGPUs.  Detecting errors avoids silent data corruption and, if combined with an error recovery 

mechanism, can enable transparent fault tolerance. 

The primary contribution of this paper is a low-cost mechanism for detecting errors in the SIMT 

cores present in GPGPUs. Although the Argus approach has already been proposed for general 

purpose cores, our application and adaptation of Argus to GPUs is novel. We experimentally 

evaluated the feasibility of this scheme using GPGPU-Sim [4], a simulator that models CUDA 

[20] capable GPUs.  

In Section 3, we present an overview of the Argus framework and how it has been implemented 

for general purpose cores. In Section 4, we describe the Argus-G implementation.  In Section 5, 

we present our experimental evaluation of Argus-G.  Section 6 presents the related work, and in 

Section 7 we discuss future work. We conclude in Section 8.  
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3. Argus Overview 

This section describes the Argus methodology (Section 3.1) and how it has been implemented 

for general purpose cores (Section 3.2).  The implementation of Argus is core-specific, and we 

will present our Argus-G implementation for GPGPUs in Section 4.  

3.1 Argus Framework 

The actions performed by von Neumann machines can be decomposed into three basic activities: 

choosing the sequence of instructions to execute (“control flow”), performing the computation 

specified by each instruction (“computation”), and passing the result of the computation to other 

data-dependent instructions (“dataflow”).  Checking the computation, control flow and dataflow 

is a provably complete method of detecting errors in cores. We now discuss the requirements of 

the three checkers present in any Argus implementation.  

 

 

 Figure 1: SIMT Pipeline with the Argus-G Checking Methodology. 
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Computation Checker: A computational checker detects errors in the functional units.  The way 

in which these checkers are implemented depends on the type of the functional unit. Many 

checkers can use knowledge about the initial result to simplify the checking logic. Sellers et al. 

[27] provide a survey of checkers for adders, multipliers, dividers, bit-wise logic units, etc.  

Computation checking is a well-known problem with well-studied solutions. 

Control Flow Checker: The control flow checker verifies that the dynamic (runtime) execution 

path of the program is valid with respect to its static control flow graph. However, if the two 

graphs differ, then an error has occurred. The control flow checker detects errors in the 

instruction fetch unit, the branch destination computation and the PC update logic. One 

limitation of control flow checking is that it cannot detect whether the core has incorrectly 

entered one of two possible control flow paths at a branch instruction. This coverage hole is 

eliminated when we add a dataflow checker and a computation checker.  

Dataflow checker: The dataflow checker verifies that the runtime dataflow is the same as that 

specified in the program’s binary. The dataflow checker detects errors in the fetch, decode, and 

register read/write units.  

3.2 Argus-1 Implementation 

Argus-1 [16] is a low-cost error detection implementation of the Argus scheme for simple, in-

order, general purpose cores. Argus-1 includes checkers for computation, control flow, and 

dataflow.  At first, one might assume that the Argus-1 implementation would be appropriate for 

GPGPUs.  However, we would not want to use Argus-1 to detect errors for GPGPUs for cost 

reasons. Even though Argus-1 could detect the same errors for a single-threaded pipeline that 

Argus-G would detect for a SIMT pipeline, Argus-1 would not be able to take advantage of the 

SIMT nature of GPGPUs, leading to an increase in hardware costs.  
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4. Argus-G Implementation 

In this section, we describe an implementation of Argus adapted to the SIMT pipelined cores 

present in GPGPUs, called Argus-G. Argus-G is a low-cost error detection mechanism for 

GPGPUs.  

4.1 Baseline GPGPU Configurations 

In this section, we describe the system model for which we designed Argus-G.  A GPGPU has 

the ability to execute hundreds of threads simultaneously. A GPGPU has many shader cores, 

each of which has a SIMT pipeline. The width of the SIMT pipeline depends on the specific 

architecture of the GPGPU. The SIMT pipeline consists of a shared fetch stage, but each thread 

in the SIMT pipeline has its own register files and Stream Processors (SP). The integer multiply 

and divide units and all the FP units are shared between the threads. GPGPUs have five different 

memory address spaces: local, shared, global, constant, and texture. Argus-G has to check that 

loads and stores from these memories are indeed from the correct memory space. The fact that 

GPGPUs have multiple memory types adds another level of complexity over simple cores that 

the checking mechanism has to consider.  

Argus-G is implemented at the SP level where each thread context needs checking. Argus-G 

performs these checks at the SPs due to the fact that errors in control flow and dataflow occur at 

the thread granularity. In a system where the width of the SIMT pipeline is n, we require n 

Argus-G check mechanisms (see Figure 1). 

The simulator we use, GPGPU-Sim [4], simulates Parallel Thread Execution (PTX) instructions. 

PTX [20] is an intermediate, pseudo-assembly language used by Nvidia’s CUDA programming 

environment [19]. PTX is generated when CUDA code is compiled, but when the binary is run 

on the GPGPU, it is converted just-in-time (JIT) into the native model specific assembly 

language (see Figure 2). Having no direct translation of the instructions into bits allows Nvidia to 

have PTX run on multiple GPGPU architectures. PTX also has virtual registers so there is no 

register file size limit, again allowing PTX to be ported to multiple architectures. 

 

Figure 2: The CUDA Chain from High Level to Assembly 
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4.2 Control Flow and Dataflow Checkers 

The control flow and dataflow checkers are based on the work done by DDFV [15]. Even though 

DDFV was developed for superscalar cores, it can be adapted to work for SIMT cores. The 

initial Argus-1 implementation demonstrated that DDFV could be streamlined to work with 

simple, single-threaded cores. We extended the concepts that were proposed by DDFV and 

Argus-1 and adapted them to make them compatible with the SIMT cores in GPGPUs. 

Argus-G detects errors in the core’s dataflow by comparing the static dataflow graph (DFG) 

specified by the program to the dynamic DFG computed by the processor during execution. Both 

DFGs are represented using constant-sized signatures. The static signatures are computed during 

the translation process from PTX to the native assembly, which occurs just before runtime (PTX 

is translated JIT to the native assembly code). To avoid problems with data dependent branches, 

which can dynamically alter the DFG, Argus-G performs checks at the granularity of basic 

blocks. However, some errors may not be detected due to aliasing (i.e., having multiple basic 

blocks with the same signature), though the chance of this occurring can be diminished by 

increasing the size of the signatures. 

The mechanism described in the previous paragraph checks the dataflow, and it implicitly checks 

the control flow within a basic block, but not the control flow between basic blocks. To provide 

full control flow checking, we add another mechanism over the basic dataflow checker. We use a 

block’s basic dataflow signature as both a representation of the block’s internal dataflow, and as 

a unique, address-independent block identifier that can be used for full control flow checking. 

This signature is called the dataflow and control flow signature (DCS). Argus-G embeds into 

each basic block the signatures of its legal successor basic blocks. Then at runtime, if an error 

occurs, the error will be detected (barring aliasing), because the block’s runtime DCS will not 

match the signature computed statically at compile time. 

Figure 3 illustrates how Argus-G embeds the DCS for basic blocks with one or two successor 

basic blocks. The DCS is embedded in a NOP instruction. A basic block that has only one legal 

basic block after it contains only that basic block’s signature (e.g., the signature embedded in 

BB3 is that of BB4). However, a basic block that has two legal successor basic blocks must 

PTX Assembly Code with Signatures Embedded 

 

BB1: cvt.u32.u16    %r1, %tid.x;       

 add.u32          %r2, %r1, %r1;         

 setp.gt.s32      %p1, %r1, %r1;   

 Signature       {BB2, BB3}  

 @%p1bra        $BB3; // branch instruction 

BB2: add.u32          %r1, %r1, 17; 

 Signature        {BB4} 

  bra.uni              BB4; // unconditional jump 

BB3: mul.wide.u16   %r3, %r1, %r2 

 Signature        {BB4} 

BB4:  ld.const.s32    %r4, [Mem_Address1]; 

  

Figure 3: DCS Embedding 
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contain the signatures of both those basic blocks (e.g., in basic block BB1, we embed the 

signatures of basic blocks BB2 and BB3).  

DCS Computation: We compute the DCS similarly to the way in which DDFV computed the 

dataflow signature and Argus-1 computed the DCS. We maintain a State History Signature 

(SHS) for each architectural location, i.e., we have a SHS for each register (SHSreg), program 

counter (SHSpc), and memory (SHSmem). Since GPGPUs have five different types of memory 

Argus-G needs five different SHSmem’s, one for each type of memory. This is one of the 

differences between the original Argus-1 implementation and Argus-G. One scenario that Argus-

G currently does not address is if multiple threads concurrently access the texture or the shared 

memories. We plan to address this in future work, but for now we simplistically assume that 

concurrent accesses to texture or shared memories are either disallowed or temporarily disable 

checking of the SHSs for these memories.   

A SHS for a particular location represents the history of that particular location from the start of 

the current basic block. The SHS of each location is reset to its specific initial value whenever a 

basic block is found to have executed correctly, i.e., has succeeded its legal parent block and has 

its computed DCS match the embedded DCS. Each SHS has to be maintained for all previous 

mentioned locations in each lane of the SIMT pipelines. The SHS of a particular destination 

location depends on the operation that produced it, as well as the operand registers used. When 

an instruction is executed, for example, add.u32 %r3, %r2, %r1, the new SHS of destination 

register %r3 depends on SHS%r2, SHS%r1, and the fact that the operation was an add.  

In order to detect whether the dynamic dataflow graph for memory operations was the same as 

the static dataflow graph, we assign an initial value to SHSs of the various memory address 

spaces. When a load instruction is executed, the SHS of the destination operand will depend on 

the memory space type, and the address type, whether the address was a constant, from a 

register, or from a register with an offset added to it. The dataflow checker does not, however, 

check the value of the offset, the immediate address, or the final computed address. These values 

are checked by the computation checker. For example, when the instruction load.const.s32 %r4, 

[Mem_Address1] is executed, the new SHS of destination register %r4 will depend on its 

previous value, SHS%r4, SHSCONST_MEM, and the fact that the address was an immediate. The SHS 

of the PC, SHSpc, is written to by jumps and branches, both of which are present in the CUDA 

architecture. We deal with stores in a similar manner, as we incorporate the fact that the store 

occurred and to which address space it occurred, but the DCS does not check to see if the value 

stored was correct. 

Signature Size: The size of the DCS and the SHSs should allow a unique value for each of the 

registers, PC, and memory spaces. In addition, the DCS should be small enough to be easily 

embedded into the binary. The size of the DCS depends on the number of free bits available in 

the NOP instructions used for embedding the signatures. Because we do not have access to the 
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actual architectures, our method of performing the computation of the static signatures is 

different from how we would have approached it if we had access to the actual assembly code 

run on the GPGPU.  

Embedding Signatures: Signature instructions embedded into the program cause performance 

degradation because they increase the pressure on the instruction cache and also consume 

processor cycles. These signatures were added using NOPs in PTX as we are not able to access 

the actual architecture. Had it been available to us, we could have amortized the costs of adding 

NOPS by embedding the DCS in other instructions with unused bits. Because the CUDA 

programming environment mandates that PTX assembly is translated JIT to the native assembly, 

Argus-G can work with legacy code and the programmer can make optimizations at the PTX 

level, not just at the source code level. We can then embed the signatures during the conversion 

process from PTX to the native assembly.  

4.3 Computation Checker 

There are many well-known methods to check the results of the functional units [27]. The choice 

of computation checkers is a matter of trading off cost (area and power) versus error detection 

coverage.  Because computation checking is, in general, the same for GPGPUs as it is for general 

purpose cores, we do not discuss it further here.  We only note that GPUs may have some 

functional unit types not found in general purpose cores, and these functional units would require 

different checkers than those used in general purpose cores. 

4.4 Error Detection Coverage 

Argus is a provably complete methodology for detecting errors, although implementations of 

Argus may miss some errors due to the use of imperfect checkers (e.g., modulo checking of a 

multiplier is cost-effective but imperfect).  The Argus-G implementation of Argus detects errors, 

both transient and permanent, throughout most of the chip. Because Argus-G relies on a lossy 

signature of dataflow graphs, the DCS, there is some probability of aliasing and thus missing an 

error. The computation checkers are also likely to use lossy checking, such as modulo checking, 

and thus would also miss some errors.  Lastly, we have not yet extended Argus-G to detect errors 

outside the cores, including errors in the interconnection network between the various shader 

cores and errors in the transmission of data between the GPU and the host CPU.  

4.5 Responding to Detected Errors 

The current implementation of Argus-G naively deals with detected errors by clearing all 

registers and restarting the thread in which an error was found. A better approach would be to 

leverage the nature of the CUDA programming environment’s hierarchy of threads, warps, and 

programs. If the thread has modified the memory space shared by threads within that warp, then 

the entire warp would be restarted since we cannot guarantee that other threads in that warp did 
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not access the corrupted data. If the thread modified the global memory, then the entire program 

will be restarted. One could avoid restarting by adding a memory checkpoint/recovery scheme, 

but it is not clear that the costs of doing this would exceed the benefits.  

If the detected error is due to a permanent fault, the error will recur after restarting.  To diagnose 

this situation, we can add a counter to each core that is incremented when Argus-G detects an 

error in that core.  If the counter exceeds a threshold, that core would be deemed permanently 

faulty. 

5. Experimental Evaluation 

The goal of this evaluation is to determine the performance overheads of Argus-G. We are not 

evaluating error detection coverage, area overhead, and power costs since we do not yet have a 

realistic hardware model of the GPU core; we are currently developing this hardware to enable a 

more thorough evaluation of Argus-G. 

5.1 Evaluation Methodology 

We evaluated Argus-G using GPGPU-Sim [4], a cycle-accurate GPGPU simulator. The system 

modeled by GPGPU-Sim is similar to that of the Nvidia Quadro FX5800, a CUDA capable 

GPGPU. The Nvidia Quadro FX5800 has 30 SIMT shader cores and each shader core has 8 SPs. 

As previously mentioned, the complex integer arithmetic units, as well as, all the floating point 

units are shared between the threads.  

We use scientific benchmarks that are prevalent in the contemporary general purpose GPU 

computing space. A full list of these benchmarks can be found in Table 1. We examine both the 

performance overhead, measured in processor cycles, as well as the increase in the number of 

instructions executed.  
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Figure 4(a): Increase in Normalized Runtime with Argus-G 

 

Figure 4(b): Increase in the Number of Instructions Executed 

Table 1: List of Benchmarks  

Benchmarks Description 

AES [13] AES cryptography 

BFS [11] Search in a Large Graph Algorithm  

LIB [10] Monte Carlo Simulations 

LPS [9] 3D Laplace Solver 

MUM [26] DNA Sequence Alignment 

NN [5] Neural Network 

RAY [14] Ray tracing  

STO [1] Distributed Storage Systems Acceleration 
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5.2 Performance Overhead 

Argus-G’s performance overheads come from the signature containing instructions embedded 

into the program’s binary. These instructions take up space in the instruction cache and also 

consume processor cycles when executed. The increase in the runtime, shown in Figure 4(a), is, 

on average, 4%. The increase in the number of dynamic instructions, shown in Figure 4(b), is, on 

average, 10%. The difference in these two numbers is due to the parallel nature of GPGPUs, in 

which up to hundreds of threads can be executing simultaneously. The parallel nature of 

GPGPUs allows us to amortize the costs of adding the extra NOPs. If we had access to the binary 

translations of the instructions, we could embed the signatures within the unused bits of other 

instructions instead of NOPs and thereby further reduce the impact on performance. 

Table 2 shows the average size of the basic blocks. When the basic blocks are relatively large 

(e.g., in AES, where the program consists of 4 basic blocks), the impact on performance (0.2%) is 

negligible. However, when the size of the basic blocks is much smaller (e.g., RAY), the impact on 

performance (12%) is significant. For benchmarks with long basic blocks, the increase in the 

static code length is negligible, less than 1% for AES and NN, and the corresponding impact on 

runtime is also small. But benchmarks with smaller basic blocks need more NOPs inserted and 

thus affect performance more. However, the impact on performance also depends on the 

dynamic path selected through the program during runtime and we leave a detailed analysis of 

this for the future.  

Table 2: Average Basic Block Size and increase in code length 

Benchmarks 
Basic Block Size (In 

Instructions) 

Percentage Increase 

in Static Code 

Length 

AES 425 0.2 

BFS 9 10 

LIB 11 3 

LPS 12 8 

MUM 5 18 

NN 105 1 

RAY 9 10 

STO 23 4 
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6. Related Work 

Although, to the best of our knowledge, no other error detection schemes have been proposed for 

GPGPUs, other schemes that detect errors in computation, control flow, the memory system and 

dataflow have been proposed. The schemes that check for control flow and dataflow were 

primarily targeted at superscalar cores or simpler cores.  

Error Correcting Code: ECC [21] is used in the current generation of Nvidia GPGPUs. It is 

used to correct single-bit soft errors in data storage structures, such as, the register files, shared 

memories and the caches. To the best of our knowledge, this is the only error detection scheme 

for GPGPUs. ECC can be used in conjunction with Argus-G to make GPGPUs more fault 

tolerant than either system could in isolation.  

Argus: Argus is a low-cost comprehensive system designed to detect errors in control flow, 

dataflow, computation and memory accesses. Argus combines dataflow checking and control 

flow checking into a single mechanism. It was designed to work with simple, in-order cores. As 

already mentioned, we modified Argus to make it compatible with GPGPUs.  

DIVA: DIVA [2, 3, 29] is a heterogeneous DMR scheme that uses a simple, yet architecturally 

identical core, embedded in the pipeline stage of another core for checking. This system is well 

suited to high performance, speculative RISC architectures. It can be implemented on GPGPUs, 

but the costs of doing so will be significant.  

Redundant Multithreading: Redundant multithreading [17, 24, 25] can be used to detect errors 

in GPGPUs without incurring much hardware costs since GPGPUs inherently have the capacity 

to run redundant threads. The n-way SIMT pipeline can be modified such that only n/2 threads 

are running each time and the other n/2 lanes are used for the redundant threads. However, in this 

case there exist significant opportunity costs since the theoretical maximum performance ceiling 

of the chip would be halved.  

Summary: Though some of these prior mechanisms overlap with Argus-G, most of them have 

obstacles preventing them from ported to Argus efficiently. The key among these obstacles are 

performance and power impact and the increase in hardware.  
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7. Future Work 

We plan to improve upon the evaluation of Argus-G by obtaining the results for error coverage 

and the area and power costs. We have implemented a PTX-capable GPGPU in VHDL and are 

now adding the error detection mechanisms to it. After we finished building the baseline 

GPGPU, we used Synopsys Design Compiler and IC Compiler to synthesize and floor-plan the 

design respectively. Currently, we have added most of the error detection mechanisms required 

by Argus-G. We have also written micro-benchmarks with which we plan to measure the power 

overhead and the error detection coverage.  

 After we have done this project, we plan to add hardware for error recovery, not just error 

detection. This can be done using check-pointing of the architectural state to enable safe and 

relatively quick recovery, which to the best of our knowledge, has not been implemented in 

GPGPUs.   

8. Conclusion 

The goal of this research was to develop a low-cost mechanism to detect errors in GPGPUs. We 

expect the popularity of GPGPUs to increase with time since they can be used for a wide variety 

of scientific applications. Therefore, it is important that we detect errors in GPGPUs in order to 

not distort results of simulations.  

The Argus-G implementation shows the potential of employing the Argus methodology in the 

SIMT cores present in GPGPUs. The Argus-G performance costs are low (on average 4% 

overhead), but we believe that with additional tuning, we can further decrease the performance 

costs.  
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