
Designing Scalable Heterogeneous Memory
for High-Performance Computing

Tae Jun Ham

Advisor : Benjamin C. Lee

December 1st, 2011

Abstract

As different DRAM memory protocols and emerging memory technologies present them-
selves as competitive alternatives to current DDR3-based HPC memory systems, the need for
a memory system that can handle heterogeneity increases. To satisfy this need, this paper
proposes an architecture for a scalable, heterogeneous memory system based on hierarchical
memory controllers. In addition, use of multi-level memory buffer is also introduced to provide
better memory system bandwidth and capacity. In the end, we demonstrate the effectiveness
of this system with a case study: DRAM- and PRAM-based heterogeneous memory for HPC
checkpointing.

1 Introduction

Recent advances in emerging memory technologies and new DRAM memory protocols are pro-
viding attractive alternatives to current DDR3-based memory systems in high-performance
computing (HPC). Phase change memory may be viable as a DRAM-alternative, provid-
ing new safety and consistency properties in high-performance systems [7, 20, 26, 32]. In
addition, Kozyrakis suggests the use of LPDDR2 DRAM memory in servers for its energy
proportionality[19]. Each of these technologies provide some advantage over DDR3.

Since no single memory technology or protocol dominates all others, heterogeneous memory
systems are required to fully exploit these diverse memory technologies. While heterogeneous
memory systems have been studied in the past (e.g., [24, 6, 11]), especially in the context of
3D stacking and through-silicon-vias, we propose a new architecture that organizes memory
chips using currently available technologies.

First, we propose a heterogeneous memory system that disintegrates memory controllers
from the processor, reversing a recent trend toward on-chip controllers. Discrete memory con-
trollers provide extensibility and flexibility, separating processor design choices from those in
memory. A disintegrated memory controller has a master and slaves.

The on-chip master, which is integrated with the processor, does not issue commands.
Instead, it simply forwards memory requests from the last-level processor cache to protocol-
specific, off-chip slaves via narrow, serialized point-to-point links. Each slave memory controller
communicates with memory devices using the appropriate protocol, which is the traditional
role of on-chip integrated memory controllers. This architecture is scalable and extensible; we
can architect several different slave controllers without being limited by processor area or pin
count.

Second, we propose hierarchical memory buffers to cope with low bandwidth in some het-
erogeneous memory technologies and to increase capacity by adding ranks to a single channel.
Furthermore, to demonstrate the effectiveness of the architecture, we apply a heterogeneous
DRAM/PRAM architecture to low-overhead, high-performance checkpointing. Our contribu-
tions include:

• Using disintegrated memory controllers, we present an extensible heterogeneous memory
architecture (§2)

• Using multi-level memory buffers, we present a high-bandwidth, high-capacity memory
architecture (§3)

1

Figure 1: Heterogeneous Memory Architecture : On-chip master receives memory requests, relays them
to off-chip slaves via point-to-point links. Off-chip slaves are heterogeneous and receive requests, apply
technology-specific protocols, and communicate to memory devices.

• Applying a DRAM/PRAM-based heterogeneous system, we demonstrate low checkpoint-
ing overheads (§4)

2 Heterogeneous Controllers

Integrated, on-chip memory controllers are favored in high-performance processors for their
low latency. However, integrated controllers that directly communicate with memory devices
over wide, parallel, multi-drop DDR* buses cannot scale given constraints in area, power, and
pin-out. For example, integrated DDR3 controllers have difficulty supporting eight channels,
which would require more than 512 pins.

2.1 Disintegrated Memory Controllers

To address technology constraints, high-performance processors such as the Intel Xeon 7500
[15] and the IBM Power7 [18]) utilize a buffer-on-board architecture. Integrated memory con-
trollers do not directly communicate with memory devices. Instead, on-chip controllers en-
capsulate DDR3 commands, addresses, and data into packets and send these packets to an
off-chip buffer-on-board via serialized, point-to-point links that are narrow and fast. The off-
chip buffer-on-board then de-serializes received packets and relays their contents to memory
devices. Thus, processors can use fast, serialized links to maintain bandwidth but use fewer
pins.

Our strategy to disintegrate controllers is inspired by buffer-on-board architectures. We
use serial, point-to-point interfaces to achieve higher bandwidth. But we architect significantly
different roles for on- and off-chip controllers. We refer to the on-chip controller as the master
and the off-chip controller as the slave. The on-chip master provides a homogeneous inter-
face, receiving memory requests and relaying them to slaves. The off-chip slaves implement
heterogeneous protocols, issuing specific protocol commands to its memory devices.

2.2 Hierarchical Memory Controllers

The hierarchical memory architecture is shown in Figure 1. As shown, the system is composed
hierarchically with a master and heterogeneous slaves.

Master Memory Controller. The master controller is integrated with the processor. It
receives memory requests from processor caches. The master forwards requests to appropriate
slave memory controllers based on the mapped address; it maps specific technologies to specific
address spaces. For communication going off-chip, the master serializes memory requests into
a packet and sends that packet to the slave via a serial, point-to-point link. For communication

2

coming on-chip, the master receives a packet from the link, deserializes the packet, and relays
data to the processor.

Our architecture significantly reduces the role of on-chip memory controllers. Conventional,
integrated memory controllers are responsible for scheduling and issuing protocol-specific
DRAM commands. In contrast, our master controller is a simple device that consists only
of an address decoder, serializer/deserializers (SerDes), and queues or buffers at the interfaces
to the cache and slave controllers.

By reducing the role of the master and shifting the responsibility of protocol commands to
off-chip slaves, this system can extensibly support heterogeneous technologies. With a conven-
tional, integrated controller, protocols must be identified and implemented during processor
design. In contrast, by separating memory protocol implementation from processor implemen-
tation, system architects have greater flexibility when deploying the heterogeneous mix of
technologies that best supports application needs.

Slave Memory Controller. The slave memory controller receives generic memory re-
quests from the master and follows a technology-specific memory protocol (e.g., DDR*, LPDDR*,
LPDDR*-N) when issuing commands to memory devices. In particular, the slave must dese-
rialize packets received from the master over the point-to-point link. Given queued requests,
the controller schedules protocol-specific commands to maximize parallelism while enforcing
protocol and timing constraints. Read data destined for the processor is serialized and sent to
the master.

The slaves communicate directly with memory devices. Each slave implements a specific
protocol and different slaves implement different protocols. Since slaves control memory devices
connected via multi-drop memory buses, the role of the slave is nearly identical to that of a
conventional, integrated memory controller. Slaves and conventional controllers differ only in
the link interface. Slaves require SerDes circuitry because they receive packetized memory
requests from a master over a fast but narrow, serial link. In contrast, conventional memory
controllers receive memory requests directly from the processor cache controller.

2.3 Design Analysis

Hierarchical memory controllers affect several characteristics of the memory system. Designed
for high-performance computing, the architecture trades power for bandwidth.

Bandwidth and Latency. Fast serial interfaces between the master and slave increase
bandwidth for a given number of pins. For example, consider the IBM Power7[18], which
suggests a memory pin-out on a large processor die is 224. If maximum throughput on a serial
link is 6.4(Gbps), bandwidth of 224×6.4(Gbps)=179.2(GB/s) can be achieved. In contrast, an
on-chip memory controller directly communicateing with memoy devices supports a maximum
of three data channels in a 224-pin budget. Three DDR3-1600 channels provide an aggregate
theoretical peak of 3×12.8(GB/s)=38.4(GB/s).

However, narrow and serial links introduce a new latency overhead. The receiver cannot
process the packet until it receives the whole packet.

delay =
Packet Size

Bandwidth
=

Packet Size

[# of Links]×[Link Bandwidth]

Power and Energy. Disintegrating the memory controller and linking its parts with
fast serial interfaces improves bandwidth but incurs a power cost. Although the master’s
power dissipation decreases due to reduced functionality, the newly introduced slaves dissipate
additional power.

Master power is now dominated by SerDes circuitry to serialize and deserialize parallel
data. Recent SerDes chips [17] dissipate approximately 9(pJ/bit = mW/Gbps). This cost can
range from 4.3 to 29.2 (pJ/bit) depending on the desired data rate and area budget [31]. This
cost is incurred twice for SerDes circuitry (i.e., master and slave).

Putting this number into perspective, DDR3 x4 chips may consume more than 200(pJ/bit)
depending on channel utilization [21]. Thus, SerDes may introduce a 10% power overhead.
Combined with the bandwidth analysis, we find this power cost buys a significant bandwidth
increase.

In addition to link interface power, the slave controller dissipates power that is similar to
conventional on-chip memory controllers. Recent quad-channel, integrated memory controllers
dissipate 13.6(W) [1].

3

Figure 2: Two-level memory buffering (black) to architect 64 PRAM ranks (white) on a channel.

3 Multi-level Buffers

Although discrete controllers enable a heterogeneous memory system, we may encounter chal-
lenges when organizing the system to provide the requisite bandwidth or capacity. Emerging
resistive memories often incur high write latencies due to expensive programming mechanisms.
For example, a recently prototyped x16 PRAM sustains only 6.4(MB/s) write bandwidth[5].
A high-performance memory architecture must take low-bandwidth parts and construct a
high-bandwidth system. We present a multi-level buffer architecture that increases memory
parallelism and bandwidth.

3.1 Load-Reducing Buffers

With limited device bandwidth and performance, an effective way to enhance the total band-
width is memory rank interleaving. By having a large number of ranks on a memory channel,
we can increase channel utilization even with low-bandwidth memory devices. However, the
number or ranks per channel is limited since each device causes an impedance discontinuity
on memory buses and degrades signal integrity. To cope with this signal integrity challenge as
the number of ranks increases, we insert memory buffers.

A memory buffer is a simple device located between the slave memory controller and the
memory devices. It buffers all signals destined for the memory channel to enhance signal in-
tegrity. Recent DRAM technologies, such as LR-DIMM, places this buffer on the memory mod-
ule to allow more ranks per DIMM and increase system capacity [29, 14]. Buffering for DRAMs
quickly encounters diminishing marginal returns. LR-DIMMs quickly saturate a DDR* mem-
ory channel given the high bandwidth of DRAM devices and ranks; channel bandwidth is a
bottleneck for many-rank DRAM systems.

When extending the concept of buffers to low-bandwidth PRAM devices, however, we
require many PRAM ranks to saturate the same channel bandwidth. With current technology,
memory buffers increase by 4× the number of ranks that can be attached on a channel at
a cost of 5(ns) delay [29]. And the architecture incurs almost no power overhead relative to
registered modules, which are the prevalent module architecture for server memories [14].

In a PRAM buffered architecture, we assume four PRAM ranks share a channel without
degrading signal integrity. Although DDR3 protocols allow eight logical ranks per channel [15],
PRAM uses an LPDDR2-N protocol that supports fewer ranks per channel. Unlike DDR3,
LPDDR2-N does not provide on-die-termination (ODT) to improve signal integrity. Without
ODT, un-buffered channels can only support four ranks. With buffering, signal integrity is
enhanced. For example, four buffers allow a channel to support sixteen ranks per channel.

Even with four buffers, PRAM write bandwidth underutilizes a channel that provides
DDR3-like bandwidth. Thus, for low-bandwidth technologies, we consider the memory-level
parallelism of multi-level buffers. For example, Figure 2 illustrates a two-level buffer organiza-
tion that allows 64 ranks of PRAM per channel. The two-level organization illustrates a total
of twenty buffers, four in level-1 and sixteen in level-2. These buffers may be placed on either
the board or the memory module. For example, place level-1 buffers on the board and level-2
buffers on the DIMM.

4

Table 1: Architectural Simulation Parameters

CPU
2(GHz) 8-way Superscalar
32KB L1 Instruction Cache
64KB L1 Data Cache

L2 Cache 8-way 2MB L2, 64B Cache Line

Memory Con-
troller

Closed-Page, Queue per Rank,
Rank then Bank Round-robin Scheduling

Technology PRAM DRAM

Protocol LPDDR2-N-800, x16 DDR3-1333, x4

Timing
LPDDR2-N[16],
tRCD = 25(cycle)[5]

Micron DDR3[22],
tRCD =10(cycle), tCL =10(cycle),
tRP =10(cycle)

Cell Read 2.47(pJ/bit) [20] -

Cell Write 16.82(pJ/bit) [20] -

IDD Value LPDDR2-N [16] Micron DDR3[22]

Rank Write
B/W

25.6(MB/s)[5] 10.6(GB/s)

3.2 Evaluation

To demonstrate the effectiveness of multi-level buffers, we consider a varying number of PRAM
ranks. Also, for reference, we present corresponding data for a channel with four DRAM ranks.

Experimental Setup. To evaluate a PRAM memory channel with 64 ranks of PRAM de-
vices, we use cycle-accurate M5[2] processor simulator augmented with modified DRAMSim2[28].
M5 is configured to execute the Alpha instruction set architecture in system-call emulation
mode. DRAMSim2 is configured to simulate both DDR3-based DRAM and LPDDR2-N based
PRAM with a 6.4(MB/s) write constraint [5]. Table 1 summarizes simulation parameters.

We use four different workloads. SPEC CPU2006 milc and mcf are used for their high
cache miss and memory accesses per 1000 instructions [25]. In addition, two multi-programmed
workloads are used. Multi-programmed I consists of astar,bzip2, gobmk, gcc, libquantum, milc,
xalancbmk, and h264ref. This combination is used for its low locality and typical read-to-write
ratio (1.5:1). Multi-programmed II consists of sjeng (4×) and bzip (4×), chosen for their high
memory-level-parallelism.

Figure 3: Sustained Bandwidth

Figure 4: Average Read Latency
Enhancing Bandwidth. Applications can always sustain higher bandwidth on the DRAM

subsystem. However, as the number of PRAM ranks increases from 4 to 64, Figure 3 shows
monotonic increases in sustained PRAM bandwidth. Additional PRAM ranks exploit memory-
level parallelism (MLP). Diminishing marginal returns reflect the limits of application MLP.
We observe a small marginal benefit from doubling PRAM rank count from 32 to 64.

5

Figure 5: Write Bandwidth. Presented with and without constraints on PRAM programming

Figure 6: Power Breakdown

Unlike DRAM, phase change memory is characterized by asymmetric read and write per-
formance. PRAM performance asymmetry is illustrated by Figures 4-5. Average PRAM read
latency falls to approximately 200ns as the number of PRAM ranks increases, mirroring the
bandwidth analysis. For most applications, average read delay is DRAM-competitive with 32
ranks. The exception is Multi-Programmed II, which is characterized by a low read-to-write
ratio.

PRAM write performance is constrained by long-latency programming. A write injects
current into a chalcogenide and a long current pulse is required to program the cell into a
crystalline state. We consider x16 DRAM devices with a maximum 6.4(MB/s) write bandwidth
[5]. Comparing against an idealized system without such a constraint, Figure 5 shows that
rank-level parallelism exploits a large fraction of applications’ write MLP with 64 ranks. The
exception is Multi-Programmed II, which is write-intensive and benefits from an even larger
number of PRAM ranks.

Thus, load-reducing buffers permit a PRAM architecture with a large number of ranks.
And performance benefits from these ranks subject to their application-specific memory-level
parallelism. As PRAM technology evolves, write bandwidth will continue to improve. While
we consider devices with 6.4(MB/s) write bandwidth, recent prototypes indicate 40(MB/s) is
possible [4], further improving PRAM subsystem performance.

Optimizing Efficiency. In addition to performance, an architecture should be power- and
energy-efficient. Given four 2GB ranks, DRAM dissipates approximately 1.3(W/GB). Figure 6
indicates that low PRAM bandwidth leads to low PRAM power. First, PRAM background
power benefits from using the LPDDR2-N interface, which operates at lower data rates to
match low PRAM device bandwidth and, consequently, can forgo expensive delay-locked loops
and on-die-termination. Second, PRAM writes may be energy-intensive but they incur long
latencies, occur infrequently, and do not significantly impact power.

The marginal benefit in application bandwidth diminishes as the number of PRAM ranks
increases and an efficiency-maximizing design exists. We consider power divided by utilized

6

Figure 7: Energy Efficiency (pJ/bit = mW/Gbps)

bandwidth to estimate average energy per bit (pJ/bit = mW/Gbps). Figure 7 shows DRAM
and PRAM exhibit comparable efficiency, primarily because PRAM sustains much lower data
bandwidth while dissipating much less power. A system with 32 PRAM ranks is energy-
efficient. Multi-Programmed II is an exception; bandwidth improves up to 64 PRAM ranks,
justifying higher power costs.

4 HPC Checkpointing

A Massively Parallel Processing (MPP) system consists of many individual processor/memory
nodes. MPP systems have high fault rates; any single processor fault induces system failure.
For example, an ASCI Q supercomputer at Los Alamos National Laboratory has mean time
to interrupt (MTTI) of less than 6.5 hours [27]. Future MPP systems have higher failure rates
as processor counts increase. Failure rate is proportional to processor count [13]. Future MTTI
may be less than an hour [13].

MPP systems use checkpoint/restart for fault tolerance, periodically saving state to per-
sistent stores and restarting workloads from saved state after a failure. With large MTTI,
checkpointing is infrequent and overheads are negligible. However, decreasing MTTI increases
checkpoint frequency and overheads will be substantial. Checkpointing to hard disk (HDD)
incurs a 19% overhead in a petaflop machine and may exceed 97% at 10 petaflops [11].

To reduce checkpoint overheads, Dong et al. first propose exploiting the speed of phase
change memory for MPP checkpointing [11]. To provide bandwidth, this prior architecture
relies on either x72 PRAM devices that are 6× wider than existing PRAM prototypes or
3D-stacked DRAM/PRAM with through-silicon-vias.

We present an alternative architecture that leverages existing technologies, such as fast
point-to-point links, disintegrated memory controllers, and memory buffers. Our architecture
does not require changes to PRAM devices. Rather we organize PRAMs to achieve the desired
system bandwidth and checkpoint overheads.

4.1 PRAM/DRAM for Checkpointing

In hybrid checkpointing [11], the system periodically checkpoints to local storage (local check-
pointing). With a longer period, local checkpoints are reflected to centralized I/O nodes (global
checkpoint). When a node fails, it recovers from a local checkpoint. If any local checkpoint is
lost, the node must instead recover from the global checkpoint.

The heterogeneous DRAM-PRAM architecture supports local checkpoints.1 To be effec-
tive, the PRAM architecture should have sufficient bandwidth. To simplify the analysis and
following Dong et al. [11], we assume DRAM and PRAM can realize their respective peak
bandwidths when checkpointing. While unrealistic for general-purpose computation, this as-
sumption holds for checkpointing, which exhibits streaming behavior and high spatial locality.
Ideally, the PRAM subsystem’s write bandwidth should match DRAM subsystem’s read band-
width.

1Although PRAM could also store global checkpoints, maintaining a large capacity PRAM system for
these infrequent checkpoints would be inefficient.

7

Figure 8: Configuration for PRAM/DRAM heterogeneous memory for checkpointing.

Balancing Bandwidth. Consider a heterogeneous memory architecture with DRAM and
PRAM, as shown in Figure 8. Bandwidths should be balanced across master-slave point-to-
point links, the DRAM subsystem, and the PRAM subsystem. First, observe that serial links
are fast and are not a bottleneck. The 32bit serial links with 6.4(Gbps) per link supports an
aggregate bandwidth of 25.6(GB/s). Second, in the DRAM subsystem with two DDR3-1666
channels, we have 25.6(GB/s) of DRAM bandwidth.

With multi-level buffers, we have a mechanism to enhance and balance PRAM bandwidth.
The balance of DRAM read and PRAM write bandwidths determines checkpoint overheads.
We architect the PRAM subsystem with LPDDR2-N-based x16 PRAM devices, each with
6.4(MB/s) of programming bandwidth [5]. With four devices per rank, a PRAM rank has
25.6(MB/s) write bandwidth.

As we increase the number of PRAM ranks, memory-level parallelism and peak bandwidth
increases. We consider different numbers of PRAM ranks, expressing PRAM write bandwidth
as a percentage of DRAM read bandwidth. For example, 128 PRAM ranks provide an aggregate
write bandwidth of 3.3(GB/s), which is approximately 12.5% of DRAM’s 25.6(GB/s) read
bandwidth. And we architect the requisite number of ranks by determining the number of
ranks that can occupy a channel, the number of buffers required, and the number of levels in
a buffer hierarchy. An example configuration is shown in Figure 8.

DRAM capacity determines the amount of data that must be copied to PRAM during a
checkpoint. For example, if a DDR3 rank has 2(GB) capacity, several channels might support
16 DRAM ranks and provide 32(GB) of capacity. To copy this data to PRAM for a local check-
point, we consider PRAM write bandwidth: checkpoint time = 32(GB)/3.3(GB/s) = 10(s).
Exhibiting high spatial locality and leveraging the system’s sequential bandwidth, checkpoint
data streams from the DRAM slave through the master to the PRAM slave. This bandwidth
analysis drives an analytical evaluation of HPC checkpointing overheads.

4.2 Analytical Hybrid Checkpoint Model

Daly proposed an analytical cost model to estimate checkpointing overheads [8]. Dong et
al. extend this model for hybrid checkpointing, which performs most checkpoints locally to
persistent memory and a few checkpoints globally to a centralized I/O servers. Table 2 lists
the parameters needed to calculate hybrid checkpoint overhead.

8

Table 2: Hybrid Checkpointing Parameters
Parameter Meaning
Ts Original computation time
Ttotal Total execution time
τ Checkpoint interval
pL Percentage of local checkpoint
pG Percentage of global checkpoint
δL Local checkpointing time
δG Global checkpointing time
δeq Equivalent checkpoint time
RL Local recovery time
RG Global recovery time
Req Equivalent recovery time
qL Percentage of transient failure
qG Percentage of permanent failure
MTTF Mean time to failure

Ttotal = TS

+
TS

τ
(δeq)

+
Ttotal

MTTF
×

(
1

2
(τ + δeq) +Req

)
+

Ttotal

MTTF
× qG ×

pL
2pG

(τ + δL)

Model Background. The model has several parts. The first part is the original computa-
tion time (TS). Checkpointing incurs an additional overhead as the system performs periodic
writes that require time (TS/τ × δeq). Since τ is the local checkpoint interval, this expression
captures the number of local checkpoints. Each checkpoint incurs an average cost of δeq, which
accounts for the percentages of local versus global checkpoints (pL versus PG) and the time
required for each (δL versus δG): δeq = pL×δL + pG×δG.

When a failure occurs, recovery costs are incurred. The number of recoveries is estimated
by total run time divided by mean time to failure (MTTF). The model assumes failures occur
half-way through a compute interval (1

2
(τ+δeq)) and incur a recovery cost Req, which accounts

for the percentages (qL and qG) of failures recoverable by local and global checkpoints and the
recovery times (RL and RG): Req = qL×RL + qG×RG.

Finally, if a failure has to rely on the global recovery (likelihood is qG), additional useful
computation is lost and must be re-computed. On average, the number of local checkpoints
between two global checkpoints is pL

pG
. On average, failures occur half-way through this interval

and the amount of time lost to wasted computation that must be recomputed is pL
2pG

multiplied

by the length of the interval (τ + δL).
Total computation time is assumed to be 720(hr). Reboot time during recovery is assumed

to be 0(s) for simplicity. Then, we can state that Req = δeq. We assume MTTF = 3(hr) and
assume transient fault rate qL = 95%.

Optimization. Given a memory architecture that incurs particular local checkpointing
costs (δL), we optimize the equation to minimize checkpointing overhead by consider different
ratios for local and global checkpoints (pL = 100−pG) and the interval of those checkpoints τ .
The optimization is performed using numerical methods in Matlab. For example, 128 PRAM-
rank topology being optimized is shown in Figure 9.

9

Optimal Checkpointing frequency and Local Checkpoint Percentage

Local Checkpoint Percentage(%)

Lo
ca

l C
he

ck
po

in
t I

nt
er

va
l(s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

1.1

1.2

1.3

1.4

Figure 9: Optimizing checkpoint period (s) and the percentage of local versus global checkpoints(%).

4.3 Evaluation

Table 3: Baseline System Parameters [12]
Attribute NCSA Blue Waters

Processor IBM Power 7
Peak Performance >=10 PF

Number of Cores per chip 8
Number of Processor Cores 300,000

Number of CPU chips 37500
Amount of memory 1200(TB)

Memory per CPU socket 32(GB)
Disk Transfer Rate 4(TB/s)
MTTF (expected) 3(hrs)

Transient Faults (expected) 95(%)

We consider a high-performance computing system expected to achieve 10 petaflops, as
shown in Table 3. For this system, we apply a memory architecture with disintegrated memory
controllers and multi-level buffers for a high-capacity, high-bandwidth PRAM subsystem. The
heterogeneous architecture reduces checkpoint overhead, defined as (T0 + Tc)/T0 where T0 is
execution time without checkpointing and Tc is time spent checkpointing.

We quantify these reductions with analytical models proposed by Daly [8], extended by
Dong [11], and described in the subsection above. The model is parameterized to estimate
overheads as a function of checkpoint frequency and the percentage of local versus global check-
points. The time required for global checkpoints depends on memory capacity across all nodes
and disk I/O bandwidth. In this system, the global checkpoint delay is 1200(TB)/4(TB/s) =
300(s).

The time required for local checkpoints depends on a single node’s memory capacity and
PRAM write bandwidth. Table 4 shows local checkpoint time as a function of the number of
PRAM ranks. As the number of PRAM ranks increases, so does write bandwidth of the PRAM
subsystem, measured as a percentage of DRAM read bandwidth. As bandwidth increases, local
checkpoint time falls.

Given an analytical model of checkpoint overheads, we further optimize the checkpoint
period and the percentage of these checkpoints that are local to minimize overhead for a
given number of ranks. Given a particular number of ranks, the optimization determines the
checkpoint period (s) and the percentage of local versus global checkpoints.

After optimizing checkpoint overhead, we compare checkpointing with hard disks against
hybrid checkpointing with heterogeneous DRAM/PRAM. If checkpoints are always global and
write to disk, the optimum checkpointing interval is 2545(s), incurring an overhead of 27.7%.
Hybrid checkpoints rely on local writes to PRAM. And if 128 ranks provide write bandwidth
that is 12.5% of DRAM read bandwidth, the local checkpoint delay is 10(s). This architecture
checkpoints every 466(s) and 96% of these checkpoints are local to each node. The overhead
is 9.8%.

Thus, hybrid checkpointing shifts the checkpointing delays to local nodes that benefit from
high-bandwidth writes to persistent memory. Although hybrid checkpointing performs global

10

Table 4: Checkpoint (CP) Overheads for Varying PRAM Ranks. PRAM bandwidth expressed as a per-
centage of DRAM bandwidth. *Note that checkpoint period and local checkpoint percentage are degrees
of freedom, optimized to minimize overhead.

PRAM
Ranks
(#)

PRAM
B/W (%)

Local CP
δ (s)

CP
Period*

(s)

Local
CP* (%)

CP
Overhead

(%)

32 3 40 933 91.5 14.3
64 6 20 659 94.1 11.7
128 13 10 466 95.9 9.8
256 25 5 330 97.1 8.5
512 50 2.5 234 98.0 7.6
1024 100 1.25 166 98.6 6.9

writes to disk, such writes are rare. With 96% of the checkpoints local, one global checkpoint
is performed for every 24 local ones.

5 Related Work

Phadke et al. profile application memory accesses for applications and place working sets into
particular heterogeneous DRAM modules, matching application-specific demands to a mod-
ule’s power efficiency, latency, or bandwidth [24]. This work assumes three different memory
technologies would use DDR3 protocol via the same controller. In contrast, we architect dis-
integrated master-slave controllers.

Many heterogeneous memory systems use a small DRAM as a cache for a larger PRAM-
based main memory [3, 9, 23, 26]. Caches mitigate the low PRAM bandwidth and enhances
PRAM endurance. Orthogonal to our work, these caching and data management strategies
could be implemented by the master in a heterogeneous architecture with discrete memory
controllers.

In addition to quantitative performance differences, heterogeneous memories introduce
qualitative capability differences. Coburn et al. and Volos et al. separately exploit hetero-
geneous non-volatile memory for persistent data structures by providing programmer-exposed
primitives and abstractions [6, 30]. Our hardware supports these software mechanisms by
assigning non-volatile memory to a particular range of addresses.

Condit et al. present a new file system that improves data safety and consistency with phase
change memory [7]. Dong et al. propose stacking PRAM on DRAM for high-bandwidth HPC
checkpointing [11, 10]. Using their analytical model for checkpointing overheads, we present
an alternative architecture with discrete memory controllers and load-reducing buffers. Our
approach is extensible with respect to the number of heterogeneous technology protocols as
well as bandwidth and capacity.

6 Conclusion

We present a new architecture for heterogeneous memory controllers with an integrated mas-
ter that forwards memory requests to discrete slaves, each of which implement heterogeneous
protocols for different technologies. To enhance capacity and bandwidth, especially for emerg-
ing phase change memory, we use load-reducing buffers to construct a hierarchical channel
architecture. With modest power and latency overheads, the system provides capacity and
bandwidth that benefits a variety of applications such as HPC checkpointing.

References

[1] AMD. ACP-The truth about power consumption starts here. Technical Report AMD-
43761C, 2009.

[2] N. Binkert et al. The gem5 simulator. SIGARCH Comput. Archit. News, 39:1–7, Aug.
2011.

[3] A. Bivens et al. Architectural design for next generation heterogeneous memory systems.
In International Memory Workshop (IMW), 2010.

11

[4] Y. Choi et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. In ISSCC,
2012.

[5] H. Chung et al. A 58nm 1.8V 1Gb PRAM with 6.4MB/s program BW. In ISSCC, 2011.

[6] J. Coburn et al. NV-Heaps: Making persistent objects fast and safe with next-generation,
non-volatile memories. In ASPLOS, 2011.

[7] J. Condit et al. Better I/O through byte-addressable, persistent memory. In SOSP, 2009.

[8] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Gener. Comput. Syst., 22, February 2006.

[9] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A hybrid PRAM and DRAM main
memory system. In DAC, 2009.

[10] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie. Leveraging 3D
PCRAM technologies to reduce checkpoint overhead for future exascale systems. In SC,
2009.

[11] X. Dong, Y. Xie, N. Muralimanohar, and N. Jouppi. Hybrid checkpointing using emerging
nonvolatile memories for future exascale systems. ACM Trans. Archit. Code Optim.,
8:6:1–6:29, June 2011.

[12] T. Dunning, B. Kramer, M. Snir, B. Gropp, and W. Hwu. Blue Waters: Leading the way
in sustained petascale computing. Presentation, 2011.

[13] G. Gibson, B. Schroeder, and J. Digney. Failure tolerance in petascale computers. CT-
Watch Quarterly, 3:4–10, 2007.

[14] Inphi. Basics of LRDIMM. http://www.edn.com/article/519386-Basics_of_LRDIMM.

php, 2011.

[15] Intel. Intel 7500 scalable memory buffer datasheet, 2011.

[16] JEDEC. Low power double data rate 2 (LPDDR2), 2011.

[17] A. Joy et al. Analog-DFE-based 16Gb/s SerDes in 40nm CMOS that operates across
34dB loss channels at Nyquist with a baud rate CDR and 1.2Vpp voltage-mode driver.
In ISSCC, 2011.

[18] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd. Power7: IBM’s next-generation server
processor. IEEE Micro, 30(2), 2010.

[19] C. Kozyrakis. Memory management beyond free(). Keynote: International Symposium
on Memory Management, 2011.

[20] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a
scalable dram alternative. In ISCA, 2009.

[21] Micron. Calculating memory system power for DDR3. Technical Note TN-41-01, 2007.

[22] Micron. Ddr3 sdram datasheet. Technical Report MT41J1G4, 2009.

[23] H. Park, S. Yoo, and S. Lee. Power management of hybrid DRAM/PRAM-based main
memory. In DAC, 2011.

[24] S. Phadke and S. Narayanasamy. MLP aware heterogeneous memory system. In DATE,
2011.

[25] A. Phansalkar, A. Joshi, and L. John. Analysis of redundancy and application blanace in
the SPEC CPU2006 benchmark suite. In ISCA, 2009.

[26] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory
system using phase-change memory technology. In ISCA, 2009.

[27] D. Reed. High-end computing: The challenge of scale. Presentation: Director’s Colloquium
at Los Alamos National Laboratory, 2004.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory system
simulator. IEEE Computer Architecture Letters, pages 16–19, 2011.

[29] Samsung. Samsung DDR3 LRDIMM. http://www.samsung.com/global/business/

semiconductor/support/brochures/downloads/memory/samsung_LRDIMM.pdf, 2010.

[30] H. Volos, A. J. Tack, and M. Swift. Mnemosyne: Lightweight persistent memory. In
ASPLOS, 2011.

[31] R. Williams, T. Sze, D. Huang, S. Pannala, and C. Fang. Server memory road map.
Presentation: Server Memory Forum, 2011.

[32] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main memory
using phase change memory technology. In ISCA, 2009.

12

