
	
	
	
	
	
	
	
	

	
	
	

Writing	 Cosets	 of	 a	 Convolutional	 Code	 to	
Increase	 the	 Lifetime	 of	 Flash	 Memory	

	
by	
	

Amay	 Jhaveri	
	
	
	

Advisor:	 Dr.	 Dan	 Sorin,	 Professor	 of	 Electrical	 and	 Computer	 Engineering	
	

Duke	 University	
	

Department	 of	 Electrical	 and	 Computer	 Engineering	
	

2014	
	

2	

	
	

Table	 of	 Contents	
	

1	 Abstract	 ...	 3	

2	 Introduction	 ...	 4	

3	 Overview	 ...	 5	

3.1	 Solid	 State	 Drives	 ..	 5	
3.2	 Convolutional	 Codes	 ...	 5	
3.3	 The	 Trellis	 Diagram	 and	 Viterbi	 Decoding	 ...	 7	
3.4	 Encoding	 the	 Data	 Bits	 during	 a	 Write	 ...	 8	

4	 Implementation	 ..	 9	

4.1	 The	 Error	 Correcting	 Code	 (ECC)	 Matrices	 ...	 9	
4.2	 The	 Simulation	 Script	 ...	 10	
4.3	 Applying	 Different	 Error	 Metrics	 in	 the	 Viterbi	 Algorithm	 	 10	

5	 Results	 and	 Analysis	 ..	 12	

5.1	 Simulation	 Results	 ...	 12	
5.2	 Applying	 Different	 Error	 Metrics	 in	 the	 Viterbi	 Algorithm	 	 14	

6	 Conclusion	 ...	 15	

7	 Acknowledgements	 ..	 16	

8	 References	 ...	 17	

	

	
	

3	

1	 Abstract	
	
There has recently been a trend in the use of solid-state drives (SSDs) for mass
storage. These solid-state drives are made from flash memory cells and have
numerous advantages over hard disk drives. While SSDs are very attractive to use, the
flash memory cells that make up an SSD are prone to wear out; there is a limit to the
number of times a cell can be erased and re-written and this limit is meant to reduce in
the future [3]. In order to address this, Jacobvitz et al. [1] proposed an endurance-
coding scheme that delays the erasure of a flash page. We extended his work by
applying a rate ¼ convolutional code for encoding bits being written to an SSD and
observed the write efficiency by doing so. The rate ¼ convolutional code had a low
area overhead of 35%, but this came at the tradeoff of a 100% improvement in write
efficiency for 4-level cells and no improvement in write efficiency for 2-level cells.
We also applied different metrics used in Viterbi decoding for encoding bits, but this
resulted in no further improvements in write efficiency. The metrics however, did
show us the importance of bit-flip reduction in obtaining higher write efficiencies.

	

4	

2	 Introduction	
	
The trend in mass storage is moving towards solid-state drives over hard disk drives.
This is primarily because SSDs have many advantages such as better performance,
higher access speeds and lower energy consumption. While SSDs may be more
expensive, the cost is slowly decreasing over time making SSDs more affordable to
be used in personal computing as well as datacenters [2].

SSDs are made up of flash memory cells. According to Moore’s law [8] we should be
able to increase storage over time due to the packing of more cells, but this however,
leads to issues with robustness. The long-standing issue with flash memory cells is
they are prone to wear-out i.e. they can only be erased approximately 104 times before
they need to be replaced [3]. Therefore, while storage space may be increasing, the
SSDs may no longer be as durable and hence be rendered useless.

In order to address the problem, Jacobvitz et al [1] apply endurance coding techniques
to write multiple times to a flash page before erasing it. This research has shown that
endurance coding techniques can indeed increase the lifetime of SSDs over 500%. In
his work, Jacobvitz shows the application of a rate ½ convolutional code to allow
multiple writes to a flash page before its erasure; he notes however, that using such a
code requires a 100% area overhead, which is greatly undesirable. To reduce the area
overhead, we show how a rate ¼ convolutional code can be applied to a flash page
while still allowing multiple writes to the page before erasure.

In this work, we first look at efficiently applying a rate ¼ convolutional code to a
Flash SSD and compare it to the results from a rate ½ convolutional code. We then
dive deeper into modifying the Viterbi decoding algorithm used with the rate ¼ code
to improve wear leveling. This modification primarily involves changing the metric
that the algorithm uses to choose the best path for encoding data. We apply a variety
of modified metrics along with their results for number of writes to a flash page
before erasure.

5	

3	 Overview	

3.1	 Solid	 State	 Drives	

SSDs are made up of flash memory cells. Each flash memory cell is made up of
multiple levels; these levels can store different states of charge before the flash
memory cell reaches saturation. Commonly used flash cells are 2-level cells (2LCs),
4LCs, 8LCs. The level of a flash cell can only increase, but once a cell reaches
saturation (a 4-level cell reaches saturation at level 3), it must reset to level 0. Using a
technique known as waterfall coding [10], we use each level to only hold 1 bit of data.
A flash cell can only be reset by an erasure, and there are a limited number of erases
before a flash cell wears out.

Flash SSDs are organized in pages, and pages are grouped in blocks. Data is written
to SSDs at the page granularity, whereas SSDs are erased at the block granularity
[11]. Once a single flash memory cell in a page in the block reaches saturation, the
next write to that cell requires an erase of the entire block; this means pages holding
valid data within the block need to be copied over to a new empty block. We can
quickly see why it is important to erase a page as late as possible and have as many
pages close to saturation before erasing. The copying of data from one set of pages in
one block to another set in a new block is known as write-amplification [4], which
drastically increases the wear on a flash SSD.

3.2	 Convolutional	 Codes	

A convolutional code is a type of error correcting code where information that
requires m bits of storage is encoded such that it then requires n bits of storage. m/n is
known as the rate. The function to transform the information requires the last k pieces
of information, where k is the constraint length of the convolutional code. The
transformation function is represented by generator polynomials, where the number of
generator polynomials is equal to n and the number of operands in each polynomial is
equal to k.

For example, a rate 1/3 convolutional code with a constraint length of 3 will have
generator polynomials as shown in Equations 3.1.

g0 = 1,1,1
g1 = 0,1,1
g2 = 1,0,1 (3.1)

The final output bits using the generator polynomials are show in Equations 3.2. The
final result is modulo-2 since it should be in binary.

n0 = m1 + m0 + m-1
n1 = m0 + m-1
n2 = m1 + m-1 (3.2)

6	

A block diagram view of the convolutional encoder with shift registers can be seen in
Figure 3.3.

Figure 3.3: Block Diagram for a rate 1/3 convolutional encoder with k = 3

The ⊕ symbol is the XOR symbol and works as a modulo-2 adder.

The convolutional code can be implemented using a state machine where the number
of states is 2k-1. The system only processes one bit at a time, and this bit determines
the next state. The current state is determined by examining the contents of the left
most k-1 shift registers at a given time i.e. m1 and m0 in Figure 3.3.

The state machine described above can be represented using two tables – the next
state table (Table 3.4) and the output table (Table 3.5). For a rate 1/n convolutional
code, the number of bits in the output is equal to n.

Table 3.4: Example of Next State Table for k = 3

Current
State Input = 0 Input = 1

00 00 10

01 00 10

10 01 11

11 01 11

7	

Table 3.5: Output Table for a Rate ½ code and k = 3

3.3	 The	 Trellis	 Diagram	 and	 Viterbi	 Decoding	

A trellis is a graph whose nodes are organized in vertical slices (generally time-steps)
where nodes in one slice are connected to at least one node in prior and subsequent
slices. Using Table 3.4 and Table 3.5, a trellis diagram is constructed assuming 00 as
a start state. An example of a trellis diagram using the above tables can be seen in
Figure 3.6.

Figure 3.6: Trellis Diagram for 4 time-steps

The trellis computes all possible paths (cosets of the convolutional code) based on the
input bit and the current state. The Viterbi algorithm [6] then uses this trellis to
calculate error metrics for each state at each time-step based on the received bits and
the output bits at each state. We will refer to the output bits at each state as an edge. In
the case of Figure 3.6, the error metric is just the Hamming distance [7] between the
received bits and the encoded bits at each edge. The final path that is chosen is the
one with the lowest cumulative error metric at the last possible time-step. Based on
the chosen path, the encoded bits are then calculated.

Current
State Input = 0 Input = 1

00 00 11

01 11 00

10 10 01

11 01 10

8	

3.4	 Encoding	 the	 Data	 Bits	 during	 a	 Write	

Encoding an n-bit sequence (referred to as a dataword) involves a three-step process
[1].

1. The data word is converted to a codeword by multiplying it with an Error
Correcting Code (ECC) matrix generated based on the convolutional code
chosen. The convolutional codes are chosen such that they have maximally
distant properties [5]. Since the convolutional code is also used to create the
trellis, it is compatible with the ECC codeword.

2. XORing the codeword currently stored in the SSD with the ECC codeword
generated in Step 1. This helps identify the number of extra bits to be written
based on the difference between the two codewords.

3. Using the Viterbi algorithm to explore the set of all possible codewords and
then finding the most optimal (closely matching) codeword based on the result
from Step 2. Thus, we see that the Viterbi decoding algorithm is being used to
encode. Looking at Figure 3.6, the “Received” bits are analogous to the
codeword from Step 2, and the final encoded word written to the SSD is
analogous to the “Enc Out” bits.

9	

4	 Implementation	

4.1	 The	 Error	 Correcting	 Code	 (ECC)	 Matrices	

Building upon the work done by Jacobvitz et al., a MATLAB script was written to
generate a 1/n feed forward matrix for the first step of the encoding process. A
generator matrix with rate 1/n, constraint length k, and generator polynomials g0, g1,
… , gn-1 will take the following form:

𝐺 =

𝐺! 𝐺!
0 𝐺!
0
0

0
0

𝐺! ⋯
𝐺! 𝐺!
𝐺!
0

𝐺!
⋱

 𝐺!!! 0 0
⋯ 𝐺!!! 0
𝐺!
⋯

 ⋯ 𝐺!!!
⋯ ⋯

where each 𝐺! = 𝑔!

(!) 𝑔!
(!) ⋯ 𝑔!!!

(!) , and i represents the ith bit in a generator
polynomial.

The number of rows depends on the size of the dataword to be encoded since this
generator matrix is to be multiplied by the dataword to get a codeword. The number
of columns is the size of the codeword. The row wraps around if G0 to Gk-1 reaches
the last column of the matrix. All information to construct the codes, primarily the
generator polynomials that have maximal distance properties, can be found in in
Table 12.1 (c) of Lin and Costello’s textbook [5].

In order to calculate the dataword length given the codeword length, we consider the
following:

• Storage overhead required for error correction: log2(codeword length) + 1
• History Length based on rate of convolutional code: (codeword length)/n

The dataword length can then be calculated using Equation 4.1.

dataword length = (codeword length) – (history length) – (error correction overhead)

(4.1)

In our work, we primarily looked at rate ¼ codes and compared them to the rate ½
codes that were used by Jacobvitz et al. Once the MATLAB script for generating
matrices was complete, we ran the following regression tests to verify the correctness
of the matrices:

• Ensuring that the generator polynomials were successfully combined to create
an interleaved polynomial i.e. G0 …. Gk-1.

• Verifying that the rank of the generated matrix over GF(2) equals the number
of rows in the matrix [9].

• Confirming that each row was generated correctly as per the generic generator
matrix shown above.

10	

4.2	 The	 Simulation	 Script	

We were then able to use the theory discussed in the Overview section and implement
a program that ran for various rate 1/n convolutional codes. The function of the
program was to simulate the writing and reading of data to/from a SSD using the
encoding process discussed in Section 3.4.

Our simulations required pre-defining the codeword length, number of levels in a
flash cell, convolutional code rate, and constraint length in order to be run. The
program simulated writes and reads to one page of data, and wrote to the page in
chunks. The size of a chunk was the length of a dataword; this can be calculated using
Equation 4.1 for a given codeword length and convolutional code rate. Once a chunk
was encoded and written to the SSD, we would then make sure that all writes were
successful by looking at the charge level of each flash memory cell. On an
unsuccessful write to a cell (writing to a saturated cell), the program would log the
error for that chunk and stop any subsequent writes after attempting to write the
remaining chunks. In order to verify the correct operation of the simulation, we would
decode all successfully written chunks and ensure they were the same as the original
chunk.

For our simulations, we used a codeword length of 1024 bits for each chunk of data.
Simulations were run to determine the number of writes before failure for rate ½ and
¼ codes while sweeping constraint length and MLC levels.

In order to be tested on hardware, the dataword would still be encoded on a computer
before being written to a physical SSD. Therefore, the same program could be used in
running tests for hardware.

4.3	 Applying	 Different	 Error	 Metrics	 in	 the	 Viterbi	 Algorithm	

We implemented different metrics for Viterbi Decoding in order to try and improve
the write efficiency for a rate ¼ code. Using different metrics allows us to change the
best path chosen in encoding data using Viterbi decoding (refer to Section 3.3 for
more detail). The goal behind creating each metric was to improve wear-leveling i.e.
evenly distributing writes across each set of bits outputted in Viterbi decoding. Since
these improvements were being made for a rate ¼ code, the metric was evaluated for
each edge outputted by the Viterbi algorithm during each time-step. For each metric
implemented, we record a wear leveling benchmark (Equation 4.2) and the number of
successful writes before failure.

𝑊𝑒𝑎𝑟 𝐿𝑒𝑣𝑒𝑙𝑖𝑛𝑔 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 =

𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝐶𝑒𝑙𝑙𝑠 + # 𝑜𝑓 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝐶𝑒𝑙𝑙𝑠
𝑜𝑓 𝐹𝑎𝑖𝑙𝑒𝑑 𝐶ℎ𝑢𝑛𝑘𝑠
𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝐶ℎ𝑢𝑛𝑘 𝑆𝑖𝑧𝑒

(4.2)

The closer the benchmark is to 1, the more wear-leveled the encoded page is on
failure.

11	

These metrics were tested using constraint length equal to 6, with 2-level cells and 4-
level cells. The reason behind using a constraint length of 6 is because using higher
constraint lengths results in longer encoding time for a dataword that could bottleneck
the write bandwidth of the SSD. The encoded chunk size being used was 1024 bits.
Below, we describe the details of each metric.

• Bit-Flip Reduction: This method involves flipping the least number of bits
possible when writing new data over data that is currently stored in the cell.
Each bit, to be written, is assigned a certain weight (known as a bit flip
weight); if a bit to be written is different from the bit already stored, then this
weight is added to the resultant metric. If the bit to be written is the same as
what is already stored, then a minimum penalty (generally 0) is added to the
resultant metric for that edge. While bit-flip reduction is simple, it proves to be
effective by avoiding the saturation of a cell. Cells closer to saturation have
higher bit-flip weights thus decreasing the chance of that edge being included
in the final path for encoding.

• Adding Bit-Flip Weights: As mentioned above, each bit, to be written, is
assigned a certain weight (or penalty) that is added to the metric if the bit is
flipped. The weight of a cell increases, as it gets closer to saturation, therefore
summing the bit-flip weights is a decent indicator of how saturated a set of
cells to be written is; a set of less saturated cells will have a lower bit-flip
weight. Here, we add the bit-flip weight of each cell to be written regardless of
what the bit to be stored is.

• Adding Bit-Flip Weights + Bit-Flip Reduction: This is a combination of the
above two metrics i.e. we add all the bit-flip weights, and then further penalize
a cell which requires a bit to be written that is different from what is stored.

• Applying a Negative Bit-Flip Minimum Penalty: In the bit-flip reduction
metric, we talked about a minimum penalty applied to bits that didn’t require
flipping during a write. In general, we assigned a minimum flip penalty of 0,
but we tried assigning a negative minimum penalty to further reward an edge
if no bit was flipped. The penalty rewarded was -1.

• Changes in Flash Cell Levels per Edge: The more wear-leveled an edge is
the less changes it has in its values. Using this property, we add the bits we
wish to write to that edge and then calculate the cumulative change in
consecutive values to determine how wear-leveled an edge would be had we
written those bits to it.

12	

5	 Results	 and	 Analysis	

5.1	 Simulation	 Results	
	
First, we ran simulations for a rate ½ convolutional code and a rate ¼ code under the
same parameters. The Viterbi metric being used was the same as what was being used
by Jacobvitz et al. i.e. the Hamming distance between two edges. The simulations run
for each convolutional code measured the number of writes to a page before failure,
while varying constraint length and MLC levels. This can be seen in Figures 5.1 and
5.2.

Figure 5.1 – Number of Writes for a Rate ½ Code

As expected, the number of writes increases with number of levels in a flash cell as
well as with the constraint length. It is also interesting to note that the number of
writes per constraint length spreads out more with higher level flash cells. The
maximum number of writes is achieved is 106 writes before failure using 16-level
cells and a constraint length of 9. While we see a drastic improvement in the number
of writes for a rate ½ code, it comes at the cost of a 100% area overhead, which is
greatly undesirable. Therefore, we look at simulations for a rate ¼ code.
	
Leaving all conditions the same as a rate ½ code, we then ran simulations using a rate
¼ code. The results can be seen in Figure 5.2.

13	

Figure 5.2 – Number of Writes for a Rate ¼ Code

Comparing Figure 5.1 and 5.2, we see that the number of writes using a rate ¼ code
for a given constraint length and flash level cell is about half the number of writes
completed using a rate ½ code under the same conditions. The reason for the
reduction in number of writes is because the trellis constructed by the Viterbi
algorithm explores fewer cosets for a rate ¼ code than a rate ½ code. This means we
have fewer alternative representations of the dataword resulting in a less-optimal
encoded output.

We also notice that the number of writes with higher-level cells increases drastically
for constraint lengths 3 and above. We do not see such an increase with a rate ½ code.
The reason for this difference between both codes is most likely to do with the metric
being used for each edge. Since the edge for a rate ¼ code has 4 bits, it allows for a
more flexible metric than a rate ½ code. This flexibility could be the reason for the
sudden jump in number of writes.

For both the rate ½ code and rate ¼ code, the number of writes before failure
increases linearly with MLC levels. This is not what we expect because adding a flash
level should result in a more exponential growth in number of writes. We believe the
reason behind this is poor wear leveling and hence we look further into that.

Furthermore, we see that a rate ¼ code has about a 100% improvement in number of
writes for 4-level cells, but has no improvement in number of writes for 2-level cells.
This lack in improvement could render a rate ¼ code useless for 2-level cells and thus
it is important for us to further examine how we can increase the number of writes for
2-level cells.

14	

5.2	 Applying	 Different	 Error	 Metrics	 in	 the	 Viterbi	 Algorithm	

The goal behind modifying the error metric was to improve the wear leveling of each
edge. By changing the metric, we change the best path that the Viterbi algorithm
chooses for writing an encoded dataword to the SSD. The different metrics applied
are described in Section 4.3. For each metric, we recorded the number of writes
before failure and a wear leveling benchmark (Equation 4.2). Simulations were only
run for a rate ¼ code because we were focused at improving its write efficiency. The
results for applying each metric can be seen in Table 5.3.

Table 5.3 – Performance of a Rate ¼ Code Using Different Error Metrics

Looking at the above table, we see that metric 5 does the best in wear leveling as it
achieves the highest wear leveling benchmark for both 2-level and 4-level flash cells.
For 4-level flash cells however, we have a significant reduction in the number of
writes when using metric 5. As for 2-level flash cells, the number of writes is the
same across all metrics and hence we believe that metric 5 might actually have the
highest potential in increasing the number of writes to 2 writes before failure.

Examining the results for 4-level cells closely, we see that metrics 2 and 5 have
significantly less writes than the others. This is interesting because we expected them
to perform the best wear leveling and hence get the highest number of writes. While
metric 5 holds up to expectations with wear leveling, we were surprised by the
reduction in number of writes. Ironically, metric 1 has the highest number of writes
though it has the least focus on wear leveling i.e. it only tries to avoid saturating a
cell. Metrics 3 and 4 both incorporate bit-flip reduction and also have the same
number of writes as metric 1. On running the simulations for 6-level cells, we saw
that metric 1 still obtains the highest number of writes. This adds further credibility to
a hypothesis that bit-flip reduction is essential in obtaining the most writes.

 2-Level Flash Cells 4-Level Flash Cells

Metric
Wear

Leveling
Benchmark

Number of
Writes before

Failure

Wear
Leveling

Benchmark

Number of
Writes before

Failure

1. Bit-Flip Reduction 0.54 1 0.29 7

2. Adding Bit-Flip Weights 0.73 1 0.30 3

3. Adding Bit-Flip Weights +
Bit-Flip Reduction 0.54 1 0.29 7

4. Applying a Negative Bit-
Flip Minimum Penalty 0.54 1 0.31 7

5. Changes in Flash Cell
Levels Per Edge 0.89 1 0.63 3

15	

6	 Conclusion	
	
Through our simulations for a rate ¼ convolutional code, we see that it provides no
improvement in write efficiency for 2-level flash cells and about a 100%
improvement for 4-level flash cells. These improvements come at a cost of a 35%
area overhead for the SSD. Since 2-level and 4-level cells are the most commonly
used flash cells in the industry, we need to show higher improvements in write
efficiency if we want to justify the area overhead incurred by the convolutional code.

In our efforts to improve the write-efficiency, we applied different error metrics to be
used in the Viterbi algorithm. While none of the applied metrics resulted in an
increase in writes, we were able to determine that bit-flip reduction played a crucial
role in maintaining a higher write efficiency. In addition to this, we saw that
examining changing values across an edge resulted in better wear leveling, but was
unable to get a high enough write efficiency. Future work might include looking at the
optimal combination between wear leveling and bit-flip reduction such that we can
increase the write efficiency and justify the use of a rate ¼ convolutional code in
industry standard SSDs.

	

16	

7	 Acknowledgements	

I would like to thank Professor Sorin for providing me with the opportunity to
conduct research in this area and for his mentorship over the past two years. A special
thanks to Adam Jacobvitz for taking the time out to teach me all the theory and help
set up the program for running all the simulations. Adam was incredibly supportive
throughout the entire research period, and offered great insight when I would run into
roadblocks. I would also like to thank Jiayu Gong for his help in running the
simulations and identifying possible flaws in the system.

17	

8	 References	

[1] A. N. Jacobvitz, A. R. Calderbank, and D. J. Sorin, “Writing Cosets of a
Convolutional Code to Increase the Lifetime of Flash Memory,” in Proceedings of the
50th Annual Allerton Conference on Communication, Control, and Computing, 2012.

[2] D. G. Andersen and S. Swanson, “Rethinking Flash in the Data Center,” IEEE
Micro, vol. 30, no. 4, pp. 52– 54, Jul. 2010.

[3] International Technology Roadmap for Semiconductors, 2011 Edition, Process
Integration, Devices, and Structures. 2011.

[4] X. Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write Amplification
Analysis in Flash-based Solid State Drives,” in Proceedings of SYSTOR: The Israeli
Experimental Systems Conference, pp. 10:1–10:9, 2009.

[5] S. Lin and D. J. Costello, Jr, Error Control Coding, 2nd ed. Pearson Prentice Hall,
2004.

[6] A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm,” IEEE Transactions on Information Theory, vol. 13,
no. 2, pp. 260 –269, Apr. 1967.

[7] Hamming, “Error Detecting and Error Correcting Codes,” Bell System Technical
Journal, vol. 29, no. 2, pp. 147–160, Apr. 1950.

[8] Moore, “Cramming More Components onto Integrated Circuits,” Electronics
Magazine, pp. 114-117, Apr. 1965.

[9] Lidl, Rudolf, Niederreiter, Harald, Finite fields, Encyclopedia of Mathematics and
Its Applications 20 (2nd ed.), 1997.

[10] L. A. Lastras-Montaño, M. Franceschini, T. Mittelholzer, J. Karidis, and M.
Wegman, “On the Lifetime of Multilevel Memories,” in Proceedings of the 2009
IEEE International Symposium on Information Theory, vol. 2, pp. 1224–1228, 2009.

[11] M. Moshayedi and P. Wilkison, “Enterprise SSDs,” ACM Queue, vol. 6, no. 4,
pp. 32–39, Jul. 2008.

