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Abstract 

 The BCI Speller is a machine that flashes different letters on a screen and collects EEG 

data from the viewer, then analyzes the data to determine what letter the viewer was 

concentrating on.  This allows a user to spell words without any body movements, which is 

useful for cases of heavy paralysis where speech is inhibited.  The neurological event that this 

machine searches for is the P300, a pulse of electrical activity throughout the brain about 300 

milliseconds after an unlikely event.  However, the P300 has been noted as a varying event, and 

likewise the effectiveness of the Speller is highly variable: some tests will result in perfectly 

accurate spelling, while another test with the same user and conditions can be so inaccurate as to 

guess no letters correctly. 

 The focus of this research was to search for a fundamental difference between high-

scoring and poor-scoring Speller tests.  This could point towards a physical cause of inaccuracy, 

or could guide the way for a classification system that performs better in the case of a poor 

session. 

 Two signal features were determined particularly likely to be the cause of classification 

error – variance in the latency time of the P300 and the occurrence of large-scale noise artifacts.  

It is difficult to mathematically define the quantity of either of these features; instead, 

classification methods that account for these features were designed and implemented on test 

sessions. 



Background 

 The P300 event potential was discovered by Sutton 

et al. in 1965 [1].  It can be evoked using what is known as 

the oddball paradigm, where an unlikely target event is 

placed amidst likely events.  The P300’s reliable latency 

and low-frequency makeup makes it useful for measuring 

reaction to a stimulus.  Farwell and Donchin [2] first 

developed a Spelling machine based around this paradigm.  

There are now many variations on the concept, but the 

basis is always a screen with characters that can be bright 

or dim, and an EEG cap to measure voltage across the 

brain. 

   

  Figure 2: Example pictures of a row-column speller screen [4] and an EEG cap [5]. 

The user’s task is to concentrate on the letter they wish to spell, and count the number of 

times it lights up briefly.  Each flash of the correct letter should evoke a P300 response, but to 

the noise omnipresent in EEG measurements each letter is flashed many times.  In addition, both 

the P300 and noise activity will vary across users and tests, so in order to determine the correct 

flashes a supervised system is needed.  Usually several previously determined words will be 

spelled so that the algorithm learns how to differentiate between a correct letter’s flash (target) 

and an incorrect letter’s flash (non-target). 

 

 

 

 

 

 

 

 

Figure 1: P300, from Wolpaw et al., 2002 [3] 



Data Used 

 The Speller machine data analyzed in this report was gathered during tests in summer 

2010 by the SSPACISS group at Duke University.  There were twenty one users in all, with most 

users performing multiple test sessions for a total of sixty test sessions. 

Each session consisted of seven to nine words, always adding up to 35 letters spelled.  For each 

letter to spell, every character on the speller grid was flashed 20 times.  The speller grid was set 

up in a row-column paradigm so that every flash selected a row or a column, alternating.  The 

number of possible rows and columns is 9, so that a single spelled letter requires 180 flashes.  

With a quarter of a second gap between flashes and pauses between letters, spelling proceeds at 

roughly a letter a minute. 

The initial method of data processing and classification was based on the results from Krusienski 

et al., 2007 [6].  Eight EEG electrodes were used, those determined to have robust accuracy.  The 

voltage data from each electrode was filtered and downsampled to 20 Hz, which removes a 

significant amount of high-frequency noise and speeds up computation.  For each speller flash, a 

feature set of 800 milliseconds was chosen.  As the time between flashes is only a quarter of a 

second, each flash shares information with several before and after it.  It is possible that adjacent 

target flashes would create P300’s in close proximity to each other, and this issue is examined 

later. 

In a machine learning context, each there were 180 observations per letter spelled, with 20 

containing the target letter.  For each 35-letter session, the number of observations totals 6300.  

800ms of 20Hz voltage data from 8 channels was chosen as the feature set for each observation, 

totaling 128 features.  The primary classification algorithm used was a stepwise Linear 

Discriminant Analysis, hitherto referred to as SWLDA.  Despite its relative simplicity, this was 

determined by Krusienski et al. to be an effective classifier.  Several other classifiers were 

examined in this session, but none significantly outperformed SWLDA, even in specific cases.  

Partial least squares discriminant analysis (PLSDA) was sometimes used as a verification of 

performance as it achieved roughly the same results as SWLDA. 

There are two ways to turn the classification scores for each flash into an actual decision on 

which letter was spelled.  The set of scores for each letter can be manipulated to create a 

decision, or the flashes for each letter can be averaged together and treated as a single 

observation.  Merits and drawbacks exist for both points, but either way a layer of complexity 

must be added to the algorithm.  To avoid this complexity, accuracy was usually measured in 

terms of the area under the Receiver Operating Characteristic curve of the per-flash classifier 

scores, rather than percent of letters guessed correctly. 

 

 

 

 

 

 



Poor Scorers 

 

 

The distribution of classifier performance for each of the sixty sessions is shown above.  While 

the majority of sessions guess over 90% of letters correctly, fifteen out of the sixty sessions 

perform lower, with five failing to achieve 50% accuracy.  These poor-scoring sessions seem to 

mostly score between .6 and .75 in terms of area-under-ROC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Histograms 

of the classifier 

performance for all 

test sessions. 
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Results 

Noise Magnitude 

The ratio of the target signal to the strength 

of noise is certainly a major factor in the 

accuracy of the classification – it is for this 

reason that many flashes across multiple 

EEG channels are necessary.  It is clear from 

a visual examination of the signal that noise 

overpowers the P300.  

As such, the signal-to-noise ratio of each 

session was plotted against accuracy to 

observe how closely the two were correlated.  

While there is a clear correlation, the relationship 

is not linear enough to suggest that this is the 

only determinant of accuracy. 

 

 

 

 

 

 

 

 

It is important to note that this is simply an estimate of SNR: the true SNR cannot be calculated 

because the exact nature of the target signal (the P300 for each flash) is not known.  Instead, a 

theoretical target signal was constructed by averaging the signal from every target flash, and the 

RMS magnitude of this average was compared to the RMS magnitude of all non-target signals.  

Other factors than the pure magnitude of noise could easily affect this measurement – for 

example, variance in the location or shape of each target signal would lower the value of the 

average. 

 

Figure 5: A scatter plot of each 

session’s signal-to-noise ratio 

versus its area-under-ROC score. 

Figure 4: 5 seconds of data from an EEG channel, as 

an example.  The 800ms following a target flash is 

colored blue. 



Cross-Correlation Results 

 As discussed previously, a signal-to-noise ratio was difficult to quantify when the target 

signal cannot be measured without noise.  As a way of extracting target information without 

averaging flashes and potentially destroying or altering, all target flashes for a session were 

cross-correlated with each other.  The goal was to find a difference in the magnitude of cross-

correlation peaks between sessions, but that information was meaningless as the overall 

amplitude of each session varies drastically.  However, the location of these cross-correlation 

peaks was fairly well correlated with the session’s accuracy. 

 

 

 

 

 

 

 

 

 

High-scoring sessions had most of their peaks in the dead center of the cross-correlation, as 

would be expected of similar or equal signals.  Low-scoring sessions had more maxima located 

off center.  This could simply be an effect of noise, but it could also indicate that some target 

flashes are shifted from other flashes.  Comparing the close relationship of the cross-correlation 

peak latency and session accuracy to the less-strict relationship with RMS power, it seemed 

likely that variance in signal latency was causing problems. 

 The P300 response time is known to vary up to 200 milliseconds depending on the 

difficulty of the target/non-target distinction (Magliero et al., 1984 [7]).  A shift of this magnitude 

would essentially force a classifier to look for a wider, more general, signal, thus exposing itself 

to noise.  However, a measure of the variance in the target signal requires knowledge of the 

location of the target signal – a problem that would require classification of its own.  Rather than 

attempt this initially, we resolved to test the current Speller classifier on synthetic data with 

known latency shifts, to see if latency shifts would have a significant effect on accuracy. 

Figure 6: Histograms of the 

cross-correlation maxima 

between target signals for each 

session.  The colors shift from 

green to red in descending 

order of session accuracy. 



Shift Detection: Synthetic Data 

 The goal in constructing a testing environment for signal shift was 

to keep all other elements as close to the true test data as possible.  The 

synthetic target signal was obtained by averaging all target flashes for each 

session.  The targets could be shifted up to 100 milliseconds in either 

direction – more of a shift is unlikely given current knowledge, and would 

in fact be impossible to classify because of the 250 ms space between 

flashes.  A shift of +150 ms in one flash would also be read as a shift of -

100ms in the following flash. 

The synthetic non-target data was directly taken from real non-target 

session segments and added in a random order.  In order to control the noise 

magnitude, the non-target data was multiplied by a gain so that its 

RMS power was at a given proportion to the target signal’s power – 

effectively fixing the SNR as measured in the Noise Magnitude 

section to a certain value. 

The performance of a PLSDA classifier at various SNR levels is shown below.  Adding random 

shift to the target signal has a clear effect on the accuracy of the signal, though at sufficiently 

high or low levels of noise it has less of an effect.  The area-under-ROC of the real test sessions 

fell almost entirely between 0.6 and 0.9, so the range where the shifts have a major effect is the 

range that corresponds to real data. 

 

 

 

 

 It is worth noting that the synthetic data assumes that the target signal has no mutations 

other than a potential shift in location, and that relying on an average-based SNR measurement 

may not be a perfect analysis of the system.  As evidence of this, synthetic data was created for 

multiple sessions – some with high scores, and others with low – each fixed to the same SNR 

value.  Were this value the only factor in accuracy these subjects would perform identically, so 

such a high variance shows that a significant factor or two is still missing from the false data. 

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4

no shift

100ms shift

Figure 7:  Average of all target 

flashes for a high-scoring (top) and 

low-scoring (bottom) session. 

Figure 8:  Classifier performance on 

synthetic data at varying SNR levels. 
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Shift Detection: Modified Classifier 

While it was proven through the synthetic data tests that target signal latency shifts could 

have an effect on data, there was still no way to quantify the amount of shift in any session.  The 

approach left was to design a classifier that could detect and account for shifts in the target 

signal.  If such a classifier could outperform standard classifiers, even only on a few sessions, 

this would be strong evidence that shifts were affecting accuracy in certain sessions. 
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Figure 9:  Comparison of 

classifier performance at various 

levels of SNR, with data 

extracted from different sessions. 
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Figure 10: A diagram of the 

training method designed to 

detect shifts.  The 

fundamental concept is train 

normally, then test the 

training data with this 

classifier, along with shifted 

versions of the target flashes.  

The shifted version of the 

target signal that scores the 

highest is considered the 

correct target signal, and a 

new set of training data is 

created to classify with. 



 

A classifier with shift-detecting properties had been designed by Thompson et al., 2013 [8].  This 

classifier trains normally, but for testing it takes shifted versions of every target flash and tests 

them as well, picking the single observation (across every shift of every flash) with the highest 

score.  However, its performance was poor and its use, according to Thompson, was as an 

indicator of session accuracy.  We adapted this model to also function on training data, on the 

grounds that shifts in the training data would cause as many problems as those in the test data. 

The figure below compares the performance of this model on shifted synthetic data to the normal 

classifier on shifted and unshifted data.  It consistently outperforms the normal classifier, though 

it is worth pointing out that this synthetic data has a shift range of +/- 100 milliseconds, as well 

as a uniformly random distribution of shifts.  When the target signals are left unshifted this shift-

detecting classifier performs worse than the normal one, probably because when multiple shifted 

versions of a noisy non-target signal are being examined, it is all the more likely that one of them 

will be mistaken for a target signal. 
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Figure 11:  The shift-detecting 

algorithm for test data.  A 

shifted version of each flash is 

run through the classifier, and 

any shift of any flash with the 

highest score is considered 

indicative of the correct flash. 

Figure 12:  Classifier performance v.s. SNR with 100ms shift (left) and no shifts (right) 

AUC 



Shift Detection: Modified Classifier on Real Data 

After fair success on synthetic data, this classifier was used to score the real test sessions.  

It underperformed consistently across accuracy ranges, despite detecting more shifts in the lower 

sessions.  This still cannot conclusively prove that target signal shifts are not affecting the 

classifier accuracy, as this classifier performs best at high SNR and heavy shifting is present.  

However, are shifts present they will clearly require a more sophisticated method to detect. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  Classifier performance on real test sessions 



Non-target Artifacts 

 Artifact removal is a common technique in EEG signal processing, as human brains are 

constantly functioning in more ways than we currently understand.  However, there is little 

record of artifact removal techniques for the BCI Speller system.  The heavy low-pass filtering of 

the BCI non-target data might remove some artifacts, but the possibility of other is undeniable. 

 As the EEG noise is not visually comprehensible in the time domain, frequency domain 

plots were made to search for particularly strong frequency bands or patterns.  While no 

particularly frequencies stood out as strong, there were occasional spikes of amplitude across all 

frequencies, lasting for several seconds.  To see these on a larger scale, the test sessions were 

split into four second blocks and the root-mean-squared power of each block was measured.  

 

 

 

 For all sessions examined, there were significant amplitude spikes in these several-second 

periods.  However, the rms power of the spikes in the poor scoring sessions were generally 

higher than those in high scorers, at least relative to the mean power of each session.  Currently 

no numeric quantification of the extremity of the high-amplitude sections has been decided, so a 

correlation with classifier performance is not yet possible.  However, as a test of potential 

relation to accuracy, a classifier was run on sessions with all signals past the tenth percentile of 

magnitude (past the dotted line on the plot) cut from the observations. 

Figure 14: RMS power calculated in 4 second blocks, for a high scoring (left) and a poor scoring (right) session 

 



 

 

 

The improvement in scores is minor but fairly consistent.  Moreover, the sessions that were 

improved the most were the poor-scoring ones, as would be expected if these high-amplitude 

sections were a significant source of inaccuracy.  This is not yet a viable classification method: 

the high-amplitude time segments were removed before classification so in a way this method 

selectively picked data to test.  However, these initial results definitely encourage a deeper 

examination of high-amplitude artifacts in the EEG data. 

 

 

 

 

 

 

 

 

 

Classifier Performance in a high-amplitude-eliminating classifier v.s. a normal classifier 
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Figure 15: Relative performance of a 

prototype artifact-removing classifier. 



Future Directions 

 There are several other ways one could examine shifts or transformations in the target 

signal.  For one, higher-quality synthetic data could be constructed so that target shape 

transformations and other signal effects could be accounted for.  Also, a classifier-based 

algorithm would not be the only way to detect shifts.  Unsupervised methods like clustering or 

factor analysis would probably prove more powerful in this situation, since if classification were 

reliable these experiments would not be necessary in the first place. 

Of the potential accuracy-affecting features not included in this report, the variance in signal 

across different EEG channels stands out as a well-discussed factor.  There is a fair bit of 

literature on reliable channel sets as well as algorithms that choose channels to classify on for a 

particular session.  This field was not covered because it was deemed 

more worthwhile to examine less-researched signal properties first, and 

to either prove or disprove their effectiveness.  However, it is not entirely 

impossible that signal shift and the channels chosen are linked.  The P300 

reaches different parts of the brain at different times (Halder et al., 2013 
[9]), so it is possible that a shift in the target signal would have a different 

effect on different channels. 

 

It may be possible to quantify the amount of high-amplitude artifacts by calculating the variance 

of the amplitude measurements, or a similar value.  However, this would not necessarily account 

for single sections of unusual activity, such as the short time span with a great deal of activity in 

figure 14.  Instead of simply quantifying or removing these amplitude spikes, it may be 

worthwhile to examine them in greater detail and search for patterns or causes.  Either way this is 

a relatively simple feature to measure and manipulate, and it has already demonstrated at least 

some relation to classifier accuracy.  I would advise that research towards enhanced Speller 

accuracy be focused on these artifacts. 
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Figure 16: P300 voltage across 

the brain at various times [9] 
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