
Richard Curtis Harting
Undergraduate Thesis: Computation on Self-Organized Networks

Abstract
With the cost and limitations of scaling CMOS rising, researchers are looking into new
computing substrates. One such substrate uses carbon nanotube transistors attached to a
DNA self-assembled grid. These grids, containing a limited amount of logic, can be
randomly linked together through one bit channels. This thesis looks at improving
computation on this substrate. First, it explores the different programming trade-offs
inherent to a computer architecture on the system. This is done through a case study of
floating point arithmetic. As a result of the study, a new instruction was added to the
architecture to augment the built-in control structures. In the end, floating point addition
is implemented in a way that is competitive with modern computers, given enough nodes.
Next, this thesis explores the issue of connectivity in random topologies. Because of the
simplicity of the transceiver logic in each node, links that are made of more than one pair
of nodes fused together must be logically cut such that only two nodes remain on a link.
This process reduces the number of nodes connected to each other in the system. The
effect of cutting mechanisms, node density, and defect tolerance were all studied, and a
procedure was developed to provide a promising amount of connectivity.

1. Introduction

According to the semiconductor industry roadmap [1], the cost and complexity of
building silicon devices is increasing every year. The primary reason for these rising
manufacturing costs is the shrinking of the size of transistors in each technology
generation. Smaller transistors, with gate lengths now at 45nm, mean that more precision
must be used in the manufacturing process. Another downside to smaller transistors is a
higher defect rate. In a 500nm process, an error of 10nm is negligible, where as in a
45nm process it could cause the malfunction of a transistor. With rising defect rates and
higher chip densities, the yield of chips is also falling, furthering increasing
manufacturing costs. Eventually, this scaling will lead to a fundamental limit on the size
of transistors.

The reason that manufacturers keep pushing into more expensive technologies is
simple: performance. Smaller transistors means higher logic density, which, when used
effectively, translates into higher performance. With the self assembled systems, not
only would the manufacturing costs potentially be cheaper, but also the massive
parallelism that occurs in manufacturing could offer gains in performance. Other than the
cost of raw material, the money needed to make one small processing node at a time is
roughly the equivalent to the amount needed to make billions. If connected and designed
effectively, these nodes could provide a huge computational increase relative to silicon.

For these reasons, researchers have begun to explore alternative substrates and
methods of computation. Typically, the research that occurs can be categorized into the
following three areas:

- Devices – Examples include MOSFETs, Carbon nanotube transistors
(CNFETs)[3], and nanowire arrays[4]

- System of Integration – Examples include self assembly[5] and
photolithography

- Model of Computation – Examples include Boolean logic and quantum
computation[6]

Though many of these models share similarities, this
thesis focuses on experiments that were ran for one node
in the space. The devices used are CNFETs, which are
attached to an addressable, self-assembled DNA lattice.
This system will use a standard Boolean logic for
computation.
1.1 The Physical Model

The underlying physical system uses a DNA lattice
grid in order to selectively place addressable components.
In the laboratory, this has been demonstrated by making a
grid that been addressed using proteins to recreate letters
of the alphabet, shown in figure 1. It is estimated that these
grids can be grown to be about 1μm on each side, providing
enough addressability for up to 5000 FETs. The advantage
of such a system is the parallel assembly with which these grids can be built. Instead of
stepping through an etcher one die at a time, billions of these grids can be assembled at
once. It should be noted here that the yield of this chemical process is not ideal and
defects will arise in the self-assembly process.

Once these nodes have been made, they

need to be deposited to a surface and
interconnected. The interconnection model
assumes that each node grows out wires from
each of its transceivers. These wires are
grown in a random walk until they run into
another wire or node. Figure two shows a
topology generated by our in-house simulator.

When using this mechanism of growth,
randomness is pervasive at all levels. The
nodes may have any number of random
defects when they are deposited onto the
substrate surface. No control mechanisms are

used for the exact placement and orientation of these nodes. The amount of separation of
nodes, for example, can only be controlled probabilistically by changing the
concentration of grids to be deposited. When the wires are grown, they (theoretically)
could connect any two nodes, due to the random turning that is inherent to the process.
These wires may also fuse together, joining together more than just two nodes. A
downside of these fused links is that if the transceivers only have enough logic to
communicate on a point to point basis, nodes must be logically removed (shutting down
their transceivers) from the fused link. This haves a very significant impact on net
connectivity, as will be seen in section 6.
1.2 Implications of Physical Model

The physical model of the computer that is to be built has a profound impact on the
architecture running on top of it. With the DNA self-assembled system, many aspects

Figure 1 - DNA Assembled
Structure [25]

Figure 2 - A sample Topology

need to be considered when designing a computer architecture. The list below is by no
means complete, but it provides a listing of many of the factors that influence the
computation model.
• High Defect Rates: The nodes that are placed have a probability of being defective.

Any computing mechanism that will work needs to be able to map out or route
around these randomly placed defects. Since there are so many nodes in a system,
throwing out an entire systems for a single node defect, such as is sometimes done in
silicon, is not feasible.

• Random Interconnections: The system cannot assume anything about which nodes
are connected to others. Each node may be connected to any number of nodes,
depending on the amount of link fusion that occurs.

• Limited Interconnections: The connections that are between nodes are only a single
wire. This means that the communication of a single bit requires a handshake
between transceivers, limiting the amount of bandwidth between nodes. This
typically will make communication a bottleneck in these systems.

• Limited communication to the micro scale: Wires cannot be placed precisely for
nodes to communicate with the outside world. In Duke’s implementation, a wire is
randomly placed in the system and is responsible for inputting instructions into the
system. The nodes must be designed to tolerate this limited communication and
random wire (via) placement.

• Limited Node Resources: Each node does not have enough resources on it to do a
significant amount of computation. In an architecture studied at Duke, SOSA
(explained below), each node only has enough logic on it to support one bit
computation. The limited amount of transistors also limits the amount of routing that
each node can support. A limited routing capability is at odds with a random
network, where no network assumptions can be made.

• Large Amounts of Nodes: This where the greatest potential lay in nano-scale
systems. The sheer number of nodes that could be easily placed in a system could
perform massive amounts of computation. Any architecture mapped onto a nano-
system must be able to utilize this resource successfully.

1.3 The Computation Model
In order to further study computation models, two architectures were developed at

Duke University: the “Nano-Scale Active Network Architecture” (NANA) [7] and the
“Self-Organized SIMD Architecture” (SOSA) [8]. Since this thesis deals with SOSA, I
will only present a brief explanation of the lessons learned from NANA.

NANA consisted of two different types of nodes randomly placed into a network,
containing either compute or memory logic. When the system powered on, it went
through a configuration phase of setting up routing gradients and establishing a internal
memory system. When executing, instructions packets drift along the different routing
gradients looking for resources to execute upon. In the system, only one instruction
packet is in flight at a time. Though these packets can contain more than one instruction,
the utilization of nodes over time was minimal. This was due to both the execution
model of instructions finding resources and the use of heterogeneous nodes.

SOSA looked to remedy this low utilization in two ways. First, all nodes are
homogenous. They contain 4 transceivers for communication to neighbors, a 1-bit
arithmetic logic unit (ALU), 32 one bit registers, test logic, and control logic. By

providing both a limited amount of computation and memory on a node, it means that
operations can be done locally on each node. Once a node receives an instruction
broadcast, it has all the resources that it needs to execute it. This eliminates the wasted
time and resources of instructions searching for computation nodes. A more thorough
description of SOSA is given in the next section.

2. SOSA – Introduction

The system architecture that is used in this thesis is the “Self-Organized SIMD
Architecture,” or SOSA, developed at Duke University. The system is logically
assembled using a reverse path forwarding algorithm [11]. An external controller sends a
packet into the system through a wire (the via) and into a node located near it (the
anchor). This anchor node will then initiate a breadth first search to assemble a logical
tree of all nodes in the system. Once this broadcast has completed, the controller initiates
a depth first search (DFS). The DFS causes the nodes to configure into logical
processing elements (PEs).

Each PE consists of a head node, a middle series of nodes, and a tail node. Each node
in the PE is physically homogenous, but logically has different functionality once
configured. The head node acts as the synchronization point for PE’s executing
instructions. Regardless of when a node receives an instruction, it will not execute it
until the head node has sent the proper signal. The middle nodes act as a bit sliced
register file and ALU. The bits are arranged from the least significant bit near the head to
the most significant bit at the tail. The tail node is responsible for sinking signals and
propagating needed values back to the head node.

SOSA is a single instruction, multiple data (SIMD) type architecture. Architecturally,
that means that each instruction inserted into the system is executed on all PEs.
Instructions are sent into the system through the via. When the node closest to the via
receives the instruction, it stores the instruction in its instruction buffer and begins to
broadcast the packet throughout the system. Every node that receives the instruction
packet does the same: buffer and broadcast. The head node, once finished with the buffer
and broadcast, will send a “go” signal to the next node in its PE (through the DFS
gradient). Every node that receives both a go signal and has an instruction in its buffer
will execute the instruction and propagate the go. Any information that needs to travel
from one node to the next, such as carry bits, will propagate as well.

If all processing elements are executing every instruction, the question of data
dependant control arises. For example, consider a program where R1 and R2 each
contain a value. The goal of the program is to place the larger of the two numbers in R1
and the smaller of the two in R2. In a conventional processor this is done using an if
statement in high level code, or branch instructions in assembly. These mechanisms
provide a means for jumping to different parts of a program and not issuing specific
instructions. In a SIMD system, however, this does not work since instructions can not
be sent selectively to PE’s. Instead, SOSA uses predicated instructions. Each PE can set
a predicate bit, found in the head node, based on a conditional instruction. Next, an
instruction that is marked as predicated is broadcasted into the system. For each PE
receiving the instruction, if the predicate bit is set, the PE executes the instruction. If the
bit is not set, the PE does not execute the instruction. The major drawback to predicated
instructions is that no means of skipping instruction clauses exist. There is no concept of

the common case in SOSA programming since all instructions for all possible scenarios
must be broadcast.
2.1 Memory

SOSA does not implement a memory system. The only form of internal storage
comes in the form of the 32 (or 16, below) registers found inside of each PE. This
provides three separate difficulties. First, it limits the amount of data in the working set
that can be placed in the system. In none of the programs that were implemented for
SOSA was this an issue, but it still is an upper bound.

Second, in most parallel systems, there is a notion of shared memory or message
passing. SOSA has neither. No shared memory exists within the system due to a lack of
centralized control and memory system. Messages that are passed cannot be addressed to
specific PE’s, but can only be sent to the adjacent PE via a PESHIFT operation. This
means that any data that needs to be shared between nodes must either be broadcast in
from above (by a series of shifts and increments) or passed around all the PE’s via the
PESHIFT operation.

Finally, there is no form of instruction memory in the system. As was discussed
earlier, the only form of program control is through predicated instructions. This means
that each PE can’t have its own instruction cache to execute and skip around instructions
quickly. It also means that all instructions that a node executes must be broadcast from
the anchor node, a potential bottleneck for the system.
2.2 Communication

Name Old Code New Code Explanation
Repeat
Counter

Add R1 R2 R3
Add R1 R2 R3
Add R1 R2 R3

Add R1 R2 R3 3 Three instruction broadcasts
turn into one instruction and
a counter

Register
Modifiers

Add R1 R2 R3
Add R2 R3 R2
Add R3 R4 R1

Add R1+ R2+ R3- 3 Each repeat of the instruction
modifies the registers in the
subsequent repeats

No
Registers

Add R1 R2 R3
Shift R1
Add R1 R2 R3
Shift R1

Add R1 R2 R3
Shift
Add
Shift

As long as the registers (and
their modifiers) do not
change, they can be reused
by instructions

Table 1 - Ways of Reducing Instruction Bits Broadcast

Almost exclusively, communication is the bottleneck in SOSA programs. This

communication latency comes in two forms: instruction broadcast and data passing. Data
passing occurs as an instruction is executing. Carry bits must be propagated during add
instructions, results must be relayed to the head in comparison operations, and the
predicate bit is sent down through the nodes in predicated operations. The
implementation of SOSA does allow for the designer to make decisions to reduce this
latency. In one configuration of the system, the PE has 34 nodes, 32 of which contain 1
bit of the 32 registers. Instead, each of the middle nodes can have 2 bits of the register
file, making the PE only 18 nodes in length, lessening the amount of inter-node
communication. The cost of this, however, is that this configuration only allows for 16

registers, instead of 32. For the undertaken studies, unless otherwise stated, this is the
configuration used.

The other form of communication bottleneck is the amount of time that it takes a
system to broadcast instructions into each of the nodes. Every instruction that the nodes
execute must be broadcast through the system. Table 1 shows several examples of
mechanisms that SOSA implements that help to reduce the number of bits broadcast.
2.3 Instruction Set

Table 2 - SOSA Instruction Set [8]

Table 2 shows the SOSA instruction set. With only a few differences, the ISA is
similar to many other instruction sets, though more limited. Gone are all memory based
and branch operations. New instructions are those that set and manipulate predicate bits,
predicated instructions, and PE shifts.
2.4 Goal for programming

The motivating guideline when writing assembly code for SOSA is to limit the
amount of communication, especially the bits broadcast. This can be done by using the
mechanisms listed above, such as the repeat counters. The number of instructions
broadcast into a system can also be modified by algorithmic changes to the program.
Understanding how to over come the communication bottleneck is essential in order to
effectively implement a floating point library.

3. Floating Point Study
3.1 Motivation

The motivation for studying floating point is twofold. First, it was the first
application that was neither embarrassingly parallel nor tuned for a massively parallel
system studied for SOSA. Floating point contains many different types of exceptions and
cases that need to be handled. It also contains a non-trivial control flow in normalizing
exponents and setting exponents equal to each other in addition and subtraction. For
these reasons, floating point may be considered representative of a more general class of
programs. Finding ways of improving floating point algorithms may lead new paradigms
and ways of improving other algorithms.

Floating point operations are also a key component of scientific code, which can often
be very parallel. If floating point were to be demonstrated to take an amount of time
competitive with a normal processor, then scientific computing would become a
promising application domain for SOSA.

3.2 Experimental Setup
This section of the thesis used a custom simulator for SOSA. It models timing to the

granularity of handshakes over the interconnect.
3.3 Introduction To Floating Point

Floating point is the representation of numbers in a computer in what is essentially
scientific notation. It is used to store large numbers, small numbers, and fractional
amounts. Representations of floating numbers usually consist of a sign bit, some amount
of exponent bits, and a mantissa. The number stored is equal to the mantissa multiplied
by a base raised to the exponent.

 The IEEE 754 standard is the predominant set of rules for floating point
representation [12]. It dictates that the base of floating point numbers be 2, and also lays
out rules for representation and rounding of numbers. In implementing floating point for
SOSA, the goal was to stay in the spirit of IEEE single point standards, in the sense that
there is a sign bit, 8 bit exponent (with the same bias), and 24 bit mantissa, totaling 33
bits. The IEEE standard has a total of 32 bits since the leading (most significant) bit of
the mantissa is implicitly 1. For SOSA, it is made into an explicit 1. In IEEE floating
point, in order to be considered normalized, the leading bit of the mantissa must be 1.
 Many of the IEEE’s standards, however, were selectively dropped in the process
of implementing the floating point library. First, there is no explicit representation of 0
as there is in IEEE (a 0 exponent and 0 mantissa), since there is no implicit 1. All
numbers with a mantissa of 0 will behave correctly as 0’s when doing math. The library,
however, does not support infinity and NaN (not a number). The reason for this is
because each of these relatively unlikely cases requires their own special rules for doing
math. This means that in a SIMD machine, the code that checks for these cases and
executes based on a predicate bit must be broadcast at every operation. It is possible to
write this code if it is of high importance, but it was not written for this project.

Finally, perhaps the most significant deviation from the IEEE floating point (other
than the high radix, below) is the removal of all rounding. IEEE uses three extra bits
called the guard, round, and sticky bits in order to minimize the amount of rounding error
that occurs on normalization. Our current implementation does not have these bits and
simply truncates on normalization. This means that over many operations the floating
point numbers will monotonically decrease with respect to the actual expected values. It
also means that the margin of error will be larger than a system that rounds since the
amount of data being lost (that which is stored in the guard and round bits) is higher than
in the IEEE implementation. The reason for the elimination of these bits is to both
reduce runtime and the length of a given PE. Again, if the loss of runtime is less
important than the loss of precision, it is possible to implement these three bits.
3.4 Original Implementation

The process of adding (or subtracting) floating point number typically occurs in three
sections. The exponents must be set equal, the correct operation must occur, and sum
must be renormalized. The renormalization can occur if the mantissa is too large (>24
bits) or if the mantissa is too small (<24 bits). Each of these sections will be treated
separately.
3.4.1 Exponent Equality

The code in figure 3 is the basic way of doing exponential equality. Essentially, a
check is preformed that sees if the exponents are equal, and if they are not, shifts the

mantissa of the number with the lowest exponent from MSB to LSB and increases the
corresponding exponent by 1. Since this is a SIMD architecture, the program must
perform this check 24 times (the number of bits in the mantissa). This is because the
central controller broadcasting the instructions does have any way of telling if the
exponents are actually equal and breaking the loop. After 24 shifts, if the exponents are
still not equal, the mantissa of the smaller number will be 0 and it will be safe to do the
operation. At this point in the code, it is guaranteed that the number with the smaller
absolute value has its mantissa in R2 and its exponent in R5. R14 contains a mask that
adds 1 to the exponent.

*Repeat 6 24 #External Control insn:
 #Broadcast the next 6 insns 24 times
SETLT R5 R4 R5 #If exp2 < exp1
CPPRED R5 R2 R2 #copy predicate bit
PRSHIFTML R2 R2 R2 #shift mant2
PRADD R5 R14 R5 #Add 1 to exp2
PRESET R2 #Clear the predicate bits
PRESET R5

Figure 3 - Radix 1 Exponent Equality

3.4.2 The operation
If the operation is an addition if the sign bits of both addends are the same. If they are

different, then a subtraction is preformed. The sign of the result is equal to the sign of the
addend that has the largest absolute value.
3.4.3 Normalization

Normalization can occur either because the mantissa has 25 bits or if it has 23 or less.
While the sum can be at most 25 bits, there is no lower bound on the number bits in the
difference between two numbers. With both operations, the process is a check to see if
the mantissa is greater (less than) 24 bits and, if it is, then shifting from MSB to LSB
(LSB to MSB) and adding (subtracting) 1 from the exponent. The code for this loop can
be found in Figure 4. R3 is the sum mantissa, R4 is its exponent, R14 is a mask with a
single ‘1’ at bit 24.

#Renormalize in case mantissa is > 24 bits
SETLT R3 R14 R3
PINV R3 R3 R3 #If mant >= 25bits
PRSHIFTML R3 R3 R3 #Shift and Add
CPPRED R3 R4
PRADD R4 R14 R4
PRESET R3+ 2

#Renormalize in case the mantissa < 24 bits
SHIFTML R14 R14 R14 #mask setup
SHIFTML R4 R4 R4
*REPEAT 4 26
SETLT R3= R14= R3+ 2 #if R3 is <24 bits
PRSUB R4 R14 R4 #Subtract 1 from exp
PRSHIFTLM R3 R3 R3 #Shift mantissa 1
PRESET R3+ 2

Figure 4 - Normalization

3.5 High Radix

In figures 3 and 4, each loop must be ran 24 times, shifting one bit at a time. Since
the program is communication bound, the number of instructions broadcast from the
external controller has a direct impact on the runtime. Instead of shifting one bit at time
24 times, for example, it would be quicker to shift 2 bits at a time, thirteen times. In
these shifts, two must be added to the exponent instead of one. The name for this type of
implementation is called base or radix 22. If the shifting occurred 4 at a time, it would be
base 24 an so forth. Figure 5 shows the code for exponent equality and normalization,
respectively, for radix 4. The registers contain the same information (with the masks
slightly shifted) as in the previous example.

*Repeat 6 13
SETLT R5 R4 R5
CPPRED R5 R2 R2
PRSHIFTML R2 R2 R2 2
PRADD R5 R14 R5
PRESET R2
PRESET R5

Figure 5 - Exponential Equality: Base 4

In order to maintain 24 bits of precision, the size of mantissa in a base 4
implementation must be 25 bits. This is because, in the worst case, a normalized number
can have a leading ‘01’ instead of a leading ‘1-‘. Also, since the only number added to
the exponent is 2, it is guaranteed that if exponent starts even, it will never become an
odd number. This makes the LSB (a 0) redundant and it can be made implicit. The same
holds true for numbers with higher radices. Table 3 shows the number of bits needed to
implement each variant of floating point while maintaining the same 24 bit worst case
precision and range of exponents (using implicit zeros).

Base Sign Bits Exponent Bits Mantissa Bits Total Nodes

per PE
2 1 8 24 33 19
2^2 1 7 25 33 19
2^4 1 6 27 34 19
2^8 1 5 31 37 21
2^16 1 4 39 44 24

Table 3 - Register Size for Various Bases

Although there is an increase in the number of nodes in a PE, there is still a
significant decrease in the run time needed to do addition. Table 4 shows the decrease in
the number of combined instructions broadcast in the normalization and equality loops.
The final column is the number of flops for each base given a fixed number of nodes, 1
million, with a nanosecond time unit.

Base Loop
Iterations

Loop instructions
Broadcast

Flops per
1M nodes

2 24 240 3.64E+08
2^2 13 130 6.35E+08
2^4 7 70 9.52E+08
2^8 4 40 1.21E+09
Integer N/A N/A 9.50137E+11

Table 4 - High Radix Performance Information

There are two important notes here about high radix floating point. First, it is not
IEEE approved. IEEE 754/854 standards only allow for the use of base 2 and 10. The
reason for this is that for a given number of bits the highest precision can be obtained
with a base 2. The base 10 is allowed for financial matters. Also, high radix and the
speed vs. precision argument has been around since the dawn of floating point. IBM
mainframes, for example, used and still support a hexadecimal (24) version of floating
point. [13] The observation has always been that you sacrifice precision for speed when
doing higher radix floating point operations. [14]
3.6 Gather Go

Typically, the exponential equality portion of floating point addition is described as
“shifting one mantissa by the difference in the two exponents.” In order for this to
happen in the SOSA system, however, there needs to be a mechanism to feed data back
into the control logic. This need spawned the GATHER_GO instruction. It takes one
register (R) and a repeat counter (C) and feeds the C least significant bits of R into the
head of each PE. Next, the PE executes the subsequent instruction the number of times
that was just brought into the head.

The PE needs a minimal amount of additional hardware to implement this instruction.
The least significant bits are sent into the head of the PE though the built in shifting
mechanism. The next instruction sent out is predicated and has a maximum repeat
counter, all previously included in SOSA. During this predicated execution, however, the
head node sends the predicate bit based on the new counter being greater than zero. This
control logic, five bit counter, and decrementer are the only new logic. Ideally, in the
head node five of the predicate bits could be used for this function, along with the
included ALU. This makes the only hardware overhead the control logic.

Although the Gather Go is useful in this context, it is not immediately apparent where
else it can be used. It is only useful when one instruction is repeated a specified, known
number of times. It does not work for normalization, for example, since there is no quick
way to find the number of leading 0’s before the first 1. It does work, however, for
operations such as multiplication as will be shown later in the paper.

Table 5 shows the code that is needed to implement exponential equality using gather
go, taking eight instructions. Figure 6 shows the normalized runtime of different forms
of the implementation of floating point addition. The largest gains with gather go occur
at lower bases, which have longer loops.

Code Explanation
SHIFTML R4 R4 R4 24
SHIFTML R5 R5 R5 24

Shifting the exponents into the LSBs of
their respective registers

SUB R4 R5 R3
SETGT R3 R12 R12
PRCPREG R12 R3

Find the difference between the two
exponents. If the difference is greater than
24 (R12), then put 24 as the value of the
difference.

GATHER_GO R3 5
PRSHIFTML R2 24

The Gather and Go instruction takes the 5
LSB’s of R3 and puts them into a special
register in the head node. The next
instruction (which must be predicated) then
executes the number of times found in the
loop counter.

SHIFTLM R4 R4 R4 24 Putting the exponent in the correct place
Table 5 - Gather and Go Exponent Equality

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Normalized
Runtime

1 2 4 8

Log_2(Radix)

Standard
Gather Go

Figure 6 - Runtimes of Standard and Gather Go Addition

3.7 Binary Normalization
The final optimization that was made to floating point is an algorithmic change to the

normalization loop. Instead of executing the loop using shifts of equal lengths, the loop
is executed using shifts of 16, 8, 4, 2, and 1. For example, if a mantissa needed to be
shifted by 13 bits, it would not execute the 16 shift (based on predication), execute the 8,
4, not the 2, and finally execute the last single shift.
 Although significantly reduced, there is still a performance gain for going to a
higher radix. This is because the last iteration of the loop can be removed as one moves
from 2 to 22 to 24 etc. For example, in radix 24, the first one can be in any one of three
positions and thus the checks for 2 and 1 do not need to be preformed. The results can be
found in the new normalized graph in figure 7. The numbers in figure 7 for binary
normalization use the gather and go methodology of exponent equality.

Flops - 1M Nodes, 1ns TU

0.00E+00
2.00E+08
4.00E+08
6.00E+08
8.00E+08
1.00E+09
1.20E+09
1.40E+09
1.60E+09
1.80E+09

1 2 4 8

Log_2 Radix

Fl
op

s Flops No Go
Flops Go
GG/BIN

Figure 7 - Flops for Binary Normalization

3.8 Discussion

This analysis looked at many aspects of the SOSA system. At the surface it showed
the potential for one million nodes to execute floating point code at about 1.3GFlops,
using a base of two. The hexadecimal version of floating point allows for over
1.6GFlops. While these numbers are lower than the 200Gflops that some graphics cards
offer [15], SOSA has a much higher scaling potential. Estimates for the growth of nodes
in a system expect that between 109 and 1012 nodes could be grown at once [8]. Scaling
linearly (fairly optimistic), approximately 2.8*1011 nodes are needed to equal the
performance, in flops (360T), of IBM’s BlueGene/L [16]. These numbers provide
optimism that the domain of scientific computing is relevant to SOSA. A limiting factor
in this domain, however, may be the amount of communication needed to pass data
between PE’s.

High radix floating point operations demonstrated both the advantage of the repeat
counters and the disadvantage of broadcasting many instructions into the SOSA system.
Unfortunately, these types of optimizations may need hand tuning in order to receive the
best performance. A compiler, for example, may handle loop unrolling but a change such
as binary normalization may be too complex. This is another point to be made about
SOSA: writing efficient programs is tedious. A semester’s worth of research went into
improving the performance of floating point addition by a factor of four. The
implementation time for larger, more complex programs may be higher.

SOSA also helps to study control structures that are inherent to SIMD systems.
Predication offers some form of control, yet it is not efficient. The largest problem is the
lack of capability in SOSA to handle uncommon cases gracefully. The system must
broadcast all exception clauses into the system as predicated instructions. The
GATHER_GO instruction does offer some control relief in that it can modulate the
amount of times that an instruction is executed. This is good for essentially one line ‘for’
loops with a data dependant stopping point. While not widely applicable, this instruction
does offer benefits.

Overall, programming and worthwhile computation seems possible on SOSA. This
code, however, must often be hand tuned or highly parallelizable to achieve peak
performance.

4. Integer Multiplication Study

Integer multiplication is another program that would be benefited by gather go.
SOSA does not have a native multiplication instruction, so it must implement the
function using a series of shifts and adds. With the shift and add loop, there is a direct
trade-off between the number of available registers and the run time. Using the register
modifiers and repeat counters built in to SOSA, loop unrolling can take advantage of all
free registers. Alternatively, GAHTER_GO can be used in multiplication between shifts.
A multiplicand can be added to the product a specific amount of times (found in the other
multiplicand) then shifted. This method uses only three registers. Figure 8 shows the
code for both forms of multiplication.

*REPEAT 3 8
CPSHIFTLM R2 R4+ R4+ 4
PSHIFTML R1 R4+ R1 4
PRADD R4+ R3 R3 4

*REPEAT 3 8
GATHER_GO R2 4
PRADD R3 R1 R3 16
SHIFTLM R1 4

Figure 8– Integer Multiplication without (left) and with (right) Gather and Go

Type Registers

Used
Run Time
(normalized)

Unrolled into 1 Register 4 1
Unrolled into 2 Registers 5 0.574
Unrolled into 4 Registers 7 0.323
Unrolled into 8 Registers 11 0.198
GG, 5 bits at a time (7 iterations) 3 0.467
GG, 4 bits at a time (8 iterations) 3 0.403
GG, 3 bits at a time (11 iterations) 3 0.467
GG, 2 bits at a time (16 iterations) 3 0.600

Table 6 - Integer Multiplication Runtimes

Table 6 shows the amount of registers used and the run time for the different

variations of processes. The results show that if there are more than five registers
available, then loop unrolling provides the best run time. If there are less than five
registers, however, the GATHER_GO mechanism is the best. Interestingly, there is a
minimum in the run time of the various versions of the gather go multiply. This is
because at two bits at a time, many instructions are broadcast into the system and
broadcast communication is the bottleneck. When executing five bits at a time, the
system becomes bound by the communication latency of the predicated operations, not
the instruction broadcast. This is a demonstration of just two of the trade-offs that are at
work when designing programs to run on SOSA.

5. Recommendations for SOSA
After studying SOSA for several months, I was able to gain an appreciation of many

of the intricacies in the system. Below are some of the improvements that may be worth
looking into in the future.
5.1 Head & Tail Fusion

In comparison instructions, data must traverse the PE from head to tail to make the
correct comparison. After this, the result must propagate from the tail back to the head,
which stores the predicate bits. A possible mechanism for avoiding this reverse traversal
is to fuse the head and the tail of the PE, making it a logical ring. This way of ordering
processing elements may also provide benefits to PE shifts in that each PE can be thought
of as a ring with the head node connected to the head node of the next PE. During PE
shifts this would limit the amount of communication that needs to be sent through a PE.

One way of configuring such as system is, instead of grouping PE’s during a depth
first search, group them by subtree. Essentially a PE would not be made in a system on
the DFS until a node had just the right amount of nodes, between 1-2 times the length of
a PE, under it. This means that the only communication that would occur in this subtree
is intra-PE and the only communication that would occur above it is inter-PE. This
would potentially prevent specific nodes from being as much as a bottleneck in the
system. The downside to this type of configuration is that the number of PE’s that can be
configured is much less. To offset this loss of PE’s the configuration would need to offer
a large speedup.
5.2 Data Memory

Processing elements in SOSA only have 16 (or 32) registers. For many processes,
this is not a large working set. My idea to help counterbalance this would to have
specific nodes or PE’s dedicated to data memory in SOSA. In order to avoid the same
loss of utilization as NANA, what I propose is configuring PE’s into memory. For
example, if each memory PE could work for 4 (or 8) compute PE’s, each compute PE
could have 8 (or 4) more registers available to it for storage. In order to configure this
systme, there needs to be a separate routing entry in each node that points to its memory
PE (mPE).

The cost of such a system would be the additional control logic in each node and the
computational power lost to memory. SOSA would require new instructions for storing
and loading data into the mPE’s. Ideally, each mPE would be able to know where the
data its receiving is coming form. As an example, in a the hypothetical STORE R3 M1
instruction, each PE would send its R3 to the memory PE. The mPE would place this
data in the register equal to 4*(PENum)+1. Also, given even more logic, a shared memory
system could be placed into these nodes for data aggregation and manipulation, since data
is being sent to a central location. Currently, the aggregation of data occurs through PE
shifts. No work has been done to look into adding mPE’s into SOSA.
5.3 Instruction Cache

One of the major bottlenecks in SOSA, if not the largest bottleneck, is the
broadcasting of instructions to all nodes. This broadcast not only takes time to reach all
PE’s, but it also creates bandwidth contention with instructions that nodes are executing.
In order to combat this, an instruction cache could be placed into the system at random
locations. Via a special instruction sent from the external controller, instructions could
be stored in this cache. Another instruction would tell PE’s to execute the instructions

stored in the cache. This would limit the amount of bits broadcast into the system for
small, repeated sections of code. In order to study if this would be a useful addition to
SOSA, code needs to be analyzed for repeated sections. An initial analysis was not
optimistic about instruction caches that could only hold three instructions. In order to
allow for localized conventional code control (branches) instruction caches may need to
be too large to be physically feasible.
5.4 Multiple Instruction Vias

The motivation for having multiple instruction vias is the same as having the
instruction cache. The difference here, however, is instructions are broadcasted in from
different points in the system. The configuration phase of the system would still be done
from one via, but broadcasting instructions would occur from different vias. In order for
PE’s to differentiate from the same instruction broadcasted twice and receiving the same
instruction from two different places, the nodes need to store a new instruction gradient.
This would allow for a lower latency broadcast of instructions. It would also lead to the
ability for different nodes to execute different instructions based on their instruction via.
Each of these PE’s would still be able to pass data to the domains of other instruction
vias. In order to exploit this new model, however, complex studies of how to divide
programs between execution sections would be needed.
5.5 Wired OR

In order to combat the issue of needing to broadcast ever possible exception clause
into the system, a wired OR could provide a mechanism of feedback to the external
controller. Given a comparison instruction, using this mechanism, a controller could poll
the entire system to see if an exception clause was encountered by any PEs. To do this,
every head node in the PE satisfying the condition would attempt to propagate a 1 back to
the controller. If necessary, the controller would then broadcast the exception clause into
the system.

This type of mechanism would have several issues, however. First, the controller
needs to know that a 0 has been received. Merely, listening for a 1 will not do here since
there is no way of telling how long a propagation will take. A way of doing this would
be to have each PE notify the PE next to it that it has completed, circling the ring of PEs.
This would be a very long latency operation. Also, a probability analysis would be
needed to figure out what is the actual probability of needing to broadcast the instructions
and the expected time savings in doing the OR polling.

6. Connectivity Study

Given the limitations of the physical layer presented in the introduction, and the
knowledge that communication is a bottleneck in the SOSA computer system, I next
studied network connectivity. Previous work on the topic at Duke was an exploration on
how deposition variables and defects played a role in the total connectivity of a system[9]

The definition of connectivity used in this study is the number of nodes that are
reachable from an via that is placed in a system. This count is preformed in simulation
by a random selection of a node to act as the anchor that initiates a breadth first search
over all nodes in the system. Any node that receives a packet marks itself as visited and
forwards the packet out of all links (transceivers) that are non-defective. Should a node
receive additional packets, it sinks them. The number of nodes touched in this method
divided by the total number placed in the system is equal to the connectivity.

Figure 9 - The Growth and Cutting of a Topology

Patwardhan, et al.’s study of connectivity looked at topologies that were generated

using a network growth simulator. This simulator placed nodes of the same size into a
specified area then grew wires, using a random walk, out of each of four transceivers.
This growth of wires allowed for fused links between more than two nodes to form. This
growth model was taken to be close to the physical description given in the introduction.
The simulator allowed a decision about what combination of the orientation (rotation),
placement of nodes, and growth of wires were random. In the paper, the treatment of the
fused link buses was varied. It was found that when all parameters were random,
connectivity was high, nearly 100%, if all nodes on a link could communicate without
restriction. When the links are modeled such that only two nodes can control a bus and
all other transceivers are permanently cut off, the connectivity drops to approximately 3-
5%. This is because of both fact that the cutting of these links occurs, and the specific
methodology of cutting that was used in the paper (random). Section 6 provides an in
depth look into this phenomenon.
6.1 Tools and Modifications

My studies of network connectivity use a modified version of the simulator used in
reference 9. In order to study some of the different mechanisms responsible for
connectivity, I modified the growth simulator to support heterogeneous node sizes and a
flexible amount of transceivers.
6.2 Effect of the Number of Transceivers

The first study that I made into the connectivity of nodes was to look at the effect of
increasing the number of transceivers that are present on each node. Using the random
cutting of links, it was shown that increasing the number of transceivers in each node has

a large impact on the connectivity of the system. Increasing the number of transceivers,
and thus outgoing wires, on each node from 4 to 6 provided an increase in connectivity
from 6% to 57%. Going from four transceivers to ten provided an increase in
connectivity to 94%.

Though the connectivity was at 94% at a peak, this number is not realistic in the
current physical model. Having ten transceivers in each node would require more
transistors than can currently be placed on the DNA scaffold. These numbers, however,
do provide an idea of the gains that can be made if ways of including more than four
transceivers, physically or logically, and growing more than four wires becomes possible.

7. Cutting Changes

As was indicated in the previous section, the connectivity of four transceiver nodes in
the physically modeled system is low. The reason for this is that fused links get cut into
links with only two nodes attached. This cutting is preformed at the power on of a
system. Essentially, each node first does a built in self test (BIST) on itself. If any of the
compute or control logic is found to be faulty, the node turns itself and its transceivers
off1. If a transceiver is found to be defective, only that transceiver is turned off. After
the BIST, each transceiver that is still on attempts to discover neighbors with which it
shares a link. If more than two nodes share a link, a random back-off mechanism is used
to choose the two nodes that will communicate with each other. Each node on a link has
an equal probability of selection. Finally, the broadcast gradient is sent in from the via
and the configuration of processing elements begins.
7.1 Waiting for the Broadcast

The first change that could be made in the configuration process is for the nodes to
wait until they have received a broadcast packet before cutting the nodes. In this scheme,
no transceivers cut themselves off the links at power on. When a node receives a
broadcast packet, over each of its live links it sends a signal that notifies other nodes on
the link to randomly select one to pair with the node receiving the packet. If two nodes
on the same link simultaneously receive a broadcast, only one will remain on the link and
pair with a node that has not received the packet. Image 9 shows the process of node
placement (upper left), wire growth (upper right), the seeding of BFS (lower left), and the
system after broadcast completion (lower right).

With this change implemented, the first study looks at the change in connectivity, still
using a random selection model, when nodes wait for the broadcast. The results are
promising. Instead of having a connectivity of 4%, a system with 1200 4-transciever
nodes has a connectivity of approximately 65%! This indicates that when the links cut
randomly, they tend to form isolated “islands” of nodes. It is imperative that nodes wait
until they receive a broadcast packet before cutting the links.
7.2 Number of Vias

The amount of vias used in the system also has an effect of how much connectivity
exists in a topology. With a system with one via, a single micro-scale wire is placed into
the node system to send signals from the outside world. A node that is located near the
wire is made the anchor and becomes the root of all the system trees. In systems with
more than one anchor, the system will power on and configure around each anchor node,
one at a time, resetting after every trial. After all the possible configurations have been

1 The model is a fail-stop model and does not take into account Byzantine-type failures.

polled, the controller selects the via that has the most connectivity corresponding to it.
This sort of configuration helps to improve the average connectivity in different systems
and reduce the variability. Table 7 shows minimum and average connectivity numbers
that were taken from a system with a varying amount of anchor nodes. These numbers
were taken over 5000/#vias runs on the same topology. Since ten vias provided the
highest amount of connectivity and is physically reasonable, all simulations will be of
that system.

Number of Vias Minimum
Connectivity

Average
Connectivity

1 0.06% 71.0%
2 0.06% 72.9%
3 66.3% 73.7%
5 71.4% 74.2%
10 72.3% 74.7%

Table 7 - Effect of Additional Vias

7.3 Exploiting Self Information
Though 65% is a large gain for the connectivity, the goal of getting as close as

possible to the bus based 100% remained unsatisfied. If nodes are randomly selected to
be placed on the wire, there is a chance that the random decision may be a “bad”
decision. An example of this if three nodes were on a link, one received the broadcast
and the remaining two needed to arbitrate for the link. If one link had no children and the
other link had 3, the one with three reachable children would provide the most
connectivity benefit if added to the system2. The random selection process assigns equal
weights to each of the nodes. Ideally, the node that was optimal to achieve maximal
connectivity would be selected, typically the one with three children.

The next cutting scheme studied does exactly that. Assuming an omnipotent
knowledge of all nodes on a fused link, the node with the most live transceivers is
selected. In the case of a tie, one of the nodes in the tie is selected randomly. The
definition of a live transceiver in this study is one that that has not been cut off from their
links or found to be defective. Aside from tie selection, this is a deterministic process.
Physically, it is difficult to achieve this form of deterministic selection on a wire, but the
method provides an idea of potential connectivity gains. The amount of gain realized in
this process is an increase from about 65% to 71%.

In order to achieve a similar selection model with a physical design that is easier to
implement, I studied the connectivity model that uses a modulated random back-off. The
idea in the random selection of nodes is that each node tries to establish themselves on a
link, and if it detects a conflict, it backs off for a random amount of time and retries,
much like Ethernet [10]. This method varies the amount of time each node remains silent
as an exponential equal to the amount of transceivers that they have live. This leads to a
probability of a node selection probability on a link of:

2 This is the case for the simple example. However, there are situations where this would not be optimal.
An example of this is where the node with 3 children having an alternate route to the anchor.

Pselection(Noden) = BT(n)

 ∑
i in N BT(i)

In the above equation B is an arbitrary base, taken to be 8 in this experiment. T(i) is
the amount of transceivers alive on node i and N is the set of all nodes on a fused link.
For this experiment, the connectivity actually increased to about 74%. This is close to
the previous result and could be slightly higher because of the random selection method
may select more optimal cuts than the greedy algorithm. Since this method provides a
large amount of connectivity at a low physical cost, it is what all other studies use.
7.4 Using Local Information

If the greedy algorithm proved to be successful using only information from one
node, what would happen if information was gathered from more than one level of the
tree? There could be a situation for example, if one node had three children, all with no
children, and one node had two children, all with three children. Using the deterministic
algorithm applied from above, the first node would be connected, tying four nodes to the
anchor. If the second node was chosen, however, twelve nodes would have been
incorporated into the tree. The new method of cutting nodes looks into how acquiring
more information on different levels affects connectivity. When nodes are arbitrating a
cut, a node will add the number of transceivers it has alive to the amount that its children
have alive. The node with the highest number is then deterministically selected. This
process can be done for any amount of levels down the tree via recursion.

Simulating this system with a recursion depth of 2, 3, and 4 levels showed no
significant difference in connectivity between the nodes. This lack of change between
the no recursion model and the three different amounts of recursion indicate that either no
new information is being added to the greedy algorithm’s decision process, or that the
information that is added has no impact. While this is an interesting result, implementing
this type of system is more difficult than both the greedy algorithm that operates on one
level and the modulated back-off, currently making implementing this system a no-win
situation.
7.5 Using Global Information

The last type of information utilization is global. In this scheme, the anchor initiates
a global broadcast throughout the system. In this broadcast, no cutting occurs, and each
node remembers the node this is up the tree from itself. Next, starting with the children, a
count is sent up the tree so that every node knows how many nodes are in its (uncut)
subtree. The anchor reinitiates the broadcast, this time cutting links deterministically
based on the counts found in each node. This scheme is extremely difficult to implement
physically and offered no significant connectivity gain, therefore it was not furthered
studied.
7.6 Discussion

Overall, the simple switch from nodes randomly cutting themselves to nodes waiting
until the broadcast initiation to cut had the largest effect on connectivity. Implementing
this feature would require minimal changes to the transceiver logic. For additional
connectivity with a low implementation cost, a modulated back-off mechanism is best.
Nodes know how many transceivers that they have alive by polling after BIST and
transceivers asserting a signal on a wire to see if there are at least one response.

Implementing systems that exploit more than individual information do not currently
seem to be worth the additional logic, in terms of connectivity.

Adding anchors to a system helps to serve two purposes. First, it raises the average
amount of connectivity in a system. It also raises the minimum amount of connectivity
found in a system. For future studies in this paper, all systems are taken to have 10
anchors and implement the modulated back-off scheme.

8. Effect of the Density

Using the modulated random back-off method of selecting nodes on a link, I studied
the effect of the density of nodes placed onto a substrate. Table 8 shows the effect that
increasing the number of nodes in a system has on the total amount of connectivity. In
the table, 2200 nodes was the maximum number of nodes that could be placed in the
constrained area. It was found that once about 1200 of the possible 2200 nodes are
placed, the connectivity percentage reaches a relatively flat, increasing plateau. There is,
however, a drop of from 2000 nodes to 2200 of about 4% (from 74% to 70%). This
process was repeated for several different topologies with similar results.

Number of Nodes Connectivity
400 54.7%
800 68.1%
1200 73.9%
1600 75.5%
2000 76.1%
2200 (Max) 69.3%

Table 8 - Connectivity as a Function of Node Density

8.1 Discussion

The first point to be made about these results is that although the percentage of nodes
connected in the system decreases as the number of nodes increases from 2000 to 2200,
the absolute number of nodes connected increases. This means that if nodes can be
considered to have a free cost, then they should still be placed as densely as possible on
the substrate. If the nodes are a limiting factor in the manufacturing process then
designers should aim for a point that is near eighty percent maximum density. This will
provide some leeway in the exact concentration while still achieving the maximal amount
of node utilization. The next section challenges the assertion that with cost-free nodes
should be packed densely as possible.

 The results from this study do not take into account other factors that may be
affected by the density. For example, although not studied, the lengths of the wires
increase as node placement grows more distant. If these small changes have a non-
negligible on the communication latency, it may have a significant impact on
performance. Power density, if large enough, may also play a limiting factor in the
selection of node density. If nodes are too dense and give off a significant amount of
power, the system may produce more heat than can be cooled.

9. Effect of the Defect Model
Another part of the study of connectivity in the system is that of effects of defects.

All the previous studies in selecting a cutting methodology and the effect of density
assumed perfect nodes and transceivers. This is a study into what happens with the
removal of that assumption.

There are two defect models that are studied: node failures and transceiver failures.
During the BIST at the power on of the system, if a node discovers that its control or
compute logic is defective, it powers down. This power down removes the node and all
of its transceivers from the system. If a transceiver fails, then it powers itself down but
the node remains functional. These defects are assigned in simulation by taking each
node (or transceiver) independently, generating a random number between 0-1, and
comparing it to the reliability.
9.1 Theory

Taking the case of a perfect tree of 2000 nodes with 4 transceivers (3 children), there
is a total of 8000 transceivers, including those on the leafs of the tree. If the reliability of
nodes is 0.75, then a total of 500 nodes will be shut down. Also being shut down with the
nodes are their transceivers, 2000 in total. In this case if a node fails, then itself and its
entire sub-tree is cut off from the graph, so the connectivity will be well below ideal
value of 0.75 (all non-defective nodes). The probability of a node and its entire sub-tree
failing is equal to RN, or 0.75. The probability of any given node is not connected is
equal to 1-RN

L+1, where L is equal to the level of the node in the tree (the root being 0).
Now, lets examine the case of what happens in the same tree when only the

transceivers have defects. For this example, assume that Rt is 0.75 and that all
transceivers are independent. In this case, a total of 2000 transceivers will fail and shut
down, the same amount as in the node defect model. The number of nodes completely
cutoff from the system is equal to 2000*(1-Rt)4, or about 8. Given these numbers, it
seems apparent that the number of nodes connected in this tree would be higher than the
number in tree from the previous paragraph.

Simple intuition in this case, however, is wrong. Looking at the tree, if the link above
a node were to fail, the node below it and its entire sub-tree become disconnected. This
is the same amount of nodes that get disconnected as in the scenario where the node at
the bottom of the link becomes disconnected. This link fails whenever either of the two
transceivers fail. Thus, the probability of a link failing and taking out an entire sub-tree is
equal to (1-Rt)2. This means that the probability of any given node being disconnected
from the network is equal to 1-Rt

2L
.

The take away point from this theory is that given independent failures, that
transceiver logic need to have a reliability that is approximately equal to RN

0.5. Though
this assumes an ideal tree with no redundant links, the qualitative idea still holds. In
practice, the power that RN needs to be raised to find the equivalent Rt is less than 2,
indicating that transceivers are not as critical in the actual system. Physically, protecting
the transceiver logic may not actually be needed. If failures in a system are the result of
individual transistor failing, then the amount of transistors in each component becomes a
factor. If transceivers have half the amount of logic than the rest of the node and each
transistor failed independently, then RT would inherently equal RN

0.5. If this is not the
case, balance between the reliabilities can be done using common protection techniques,
provided enough resources exist.

9.2 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.60.70.80.91

Trans
Nodes
IdealTree_T
IdealTree_N

Figure 10 - The Effects of Defects (90/10 error bars)

Figure 10 shows the graph the percent of connected nodes as the reliabilities of either
the nodes or the transceivers are varied. The lines labeled IdealTree_[N/T] show the
amount of connectivity expected if all the nodes and links formed a perfect tree. Since
the connectivity is above these numbers, it shows that that the system contains inherent
redundancy between connected links. This result is not surprising, given the random
nature of the growth, but it does provide a sanity check for the model.

When obtaining the actual results, only one of the reliabilities were varied, while the
other was held constant. As expected, the connectivity for the system is lower at a given
reliability for transceivers. The point at which the connectivity of the two systems
become equal, however, isn’t when Rt = RN

0.5, but rather when Rt ≈RN
0.6. This is an

indication that the system performs better under the presences of transceiver defects than
the ideal system. This may be an indication that there is more redundancy build into the
wiring of the nodes than in the nodes themselves.
9.3 Density Defect

Another set of experiments that were ran for the system was a study of how well
defects are tolerated for different densities of nodes. It was previously shown that in a
defect free system, that there is a plateau for connectivity percentage and the amount of
nodes placed in a fixed area. The reason for the drop off in this percentage as the amount
of nodes increases may be because of the lack of routing space for links to fuse and add
redundancy to a system. If this was the case, as the defect rate was increased, the system
with maximal density would behave more like the ideal tree.

Figure 11 - Nodes connected as a function of RN (90/10 error bars)

0
200
400
600
800

1000
1200
1400
1600
1800

1 0.9 0.8 0.7 0.6

R_T

N
um

be
r o

f N
od

es 400N
800N
1200N
1600N
2000N
2200N

Figure 12 - Nodes Connected as a Function of RT (90/10 error bars)

Images 11 and 12 show the effect of defects on node and transceiver reliabilities,
respectively, in systems with varying node densities. A very important feature of these
graphs is that the y axis is not the percent of nodes connected (as in previous graphs) but
rather the total number of nodes that are connected to the anchor. This means that a
system that has 1600 nodes with a reliability of 0.7 will have more nodes connected to

0

200

400

600

800

1000

1200

1400

1600

1800

1 0.9 0.8 0.7 0.6

R_N

N
um

be
r o

f N
od

es 400N
800N
1200N
1600N
2000N
2200N

the anchor than a system with 2200 nodes with the same reliability. The reason for this is
most likely to be from the lack of wired redundancy that occurs when there is more room
for wires to grow. This indicates a trade-off between having too much wiring space (too
many fused links) and too little (not enough fused redundancy).

0

500

1000

1500

2000

2500

0.60.70.80.91

Real_N

Ideal N

Ideal T

Real T

Figure 13 - Theoretical and Actual Connectivity of 2200 node system

Image 13 is a graph of the connectivity of nodes with specified reliabilities of

transceivers and nodes plotted along with the theoretical number for a perfect tree
calculated using the number of nodes placed in the system (2200). This helps to prove
the theory that there is less redundancy inherent in the 2200 node system than the 1200
node system (figure 10). The number of connected nodes is only slightly higher than the
theoretical. This indicates that there is still some redundancy built into the system, since
there were only 1540 nodes originally connected, but not the amount of redundancy as
systems with smaller amounts of nodes.
9.4 Discussion

The study of defect tolerance has yielded many insights into how to design a system.
First, transceivers that are found in nodes should function with a probability that is
approximately equal to the square root of the probability of a node failing. Second,
adding too many nodes to a system is harmful in the presence of defects. This is not a
cost analysis form as done in the previous section, but rather raw connection numbers.
From these studies, it seems that the optimal point in the density is approximately 0.75 of
the maximum. This yields a large some of the largest, most robust connectivity numbers
in the presence of defects.

10. Balanced Tree, PEs
The final study of the connectivity of node systems looked into tree shape and

formation. The results can be seen in table 9. The trees that form from the given
configurations were by no means bushy. Instead of having an ideal three children per
node, each tree had about 1.5 nodes per children. This number did not vary as the density
of nodes changed.

Nodes

Children
per
Interior
Node

Number
of
Levels

Theoretical
Levels

Number
of
Children Visited

400 1.5 36.6 14.3 82.4 257.6
800 1.5 38.1 15.5 174.8 527.8
1200 1.5 42.0 17.0 285.1 870.9
1600 1.5 47.2 17.5 407.1 1219.3
2000 1.5 68.6 19.0 477.0 1494.6
2198 1.5 81.0 18.9 501.3 1554.5

Table 9 - Tree Statistics

The trees were not balanced, either. Instead of having an ideal number of levels

(log1.5 #), the trees have many more. For example, instead of the ideal 19 levels that 1500
nodes should occupy, they occupied 68. While this number is indicative of the shape of
the trees, it is not necessarily bad.

The optimal PE formation, if the number of hops from head to tail is the metric, is a
straight line down the tree. This sort of formation occurs when a depth first traversal
encounters long branches. Having a tree that is not properly balanced, therefore, would
decrease the amount of hops necessary for intra-PE communication. This will provide a
speed increase in operations where only intra-PE communication is used, that is,
everything put PE shifts. With PE’s configured in chains, there is no bottleneck in these
operations. When PE’s are in miniature trees, however, the bottleneck becomes the root
node, or the head of the PE.

In the case of PE shifts, however, this wisdom changes. If all PE’s were subtrees,
routing from one head to another would involve going up and down a hop in a balanced
tree. If the tree were instead a chain, data would need to traverse through an entire PE to
get to the head of the next one. There exist scenarios where a PE at the bottom of an
unbalanced tree must send its data through the anchor node to communicate with the next
PE. The shorter the distance to the anchor, the less time this communication takes to
occur. This difference in communication overheads leads to an interesting trade-off in
performances. If processes rely broadcasting instructions and PE shifts (as most do), then
PEs should be comprised of small sub-trees in a bushy, balanced system. If a program is
compute bound, however, the best connection configuration would be a straight line of
nodes.

11. Related Work

The study of floating point and high base systems has been theoretically studied since
the middle of the twentieth century. Many papers, for example, have been written on the

theory of high radix numbers [2]. A detailed discussion of the need for standards in
floating point operations, a counter argument to the removal of IEEE compliance, can be
found in [17]. The Thinking Machines CM-1 architecture [18] is similar to SOSA in that
it consists of many nodes using predicated instructions. While some of the aspects of the
architecture are physically infeasible, such as implementing a regular hypercube
communication network, other aspects may be helpful to implement. Interestingly, the
CM-1 machine has a global OR operation, which can check for exceptions. This would
also be very beneficial to SOSA, greatly reducing the amount of instructions broadcast.
The trade is that the latency of the instruction would likely be long and that if there are a
billion different PE’s there may be a high probability of detecting an unusual case.

There has also been work looking into how to best implement floating point numbers
in systems without any specific hardware floating point support. Some systems take a
fixed point approach to arithmetic [19]. This occurs when the compiler knows what the
exponents will be in operations and does not need to explicitly store them. This way
software will manage the exponents, leaving only integer computation. This does not
work for SOSA, however, since there are be too many processing elements for exponent
management to occur implicitly. Most similar to our work is that in [20], where the
authors implemented a software version of floating point for automotive applications.
The authors made several modifications that were similar to ours, such as using a high
radix.

12. Conclusions

In this thesis, I have studied several aspects of nanocomputing. First, I improved the
runtime for floating point operations in SOSA. I demonstrated many of the ways that can
be used to better tune general assembly code for SOSA, by demonstrating algorithmic
changes and the addition of a new control instruction. It has provided lessons that can be
applied to other processes, such as multiplication, as well as demonstrated the feasibility
of a key component of scientific computing.

SOSA runs on a substrate that is abstracted away, but that still plays an important
factor in the design of the system. Connectivity numbers for the physical model were
raised from about 5% to 74% using a new methodology for cutting fused links.
Properties of these physical systems were also studied, such as the ideal density. A small
node density can cause too many links to fuse and a low connectivity. A maximal
density does not provide enough room for redundant links and causes connectivity
problems in the face of defects.

13. Acknowledgements

I would like to thank my advisors, Professors Chris Dwyer and Alvin Lebeck, for the
guidance and support in this project. I would also like to thank Dr. Daniel Sorin, who
taught me just about everything I know about computer architecture. I would also like to
thank my family who has constantly supported me throughout my years at Duke. This
support would end if they were not included in the acknowledgements in my capstone
project.

14. References
[1] International Technology Roadmap for Semiconductors, 2005

[2] P. Johnstone, F. Petry, “Higher Radix Floating Point Representations,” Proc. Of 9th
Symposium on Computer Arithmetic, pp 128-135, 1989.
[3] A. Bachtold, P. Hadly, T. Nakanishi, C. Dekker. “Logic Circuits with Carbon
Nanotube Transistors,” Science, Vol. 294, pp 1317-1320, 2001.
[4] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, C. Lieber. „Logic Gates and
Computation from Assembled Nanowire Building Blocks,” Science, Vol. 294, pp. 1313-
1316.
[5] C. Dwyer, S.H. Park, T. LaBean, A. Lebeck. “The Design and Fabrication of a Fully
Addressable 8-tile DNA Lattice,” Foundations of Nanosciences: Self-Assembled
Architectures and Devices, pp 187-181, 2005.
[6] M. Steffen, L. Vandersypen, I. Chuang. ”Toward Quantum Compuataion: A Five-
Qubit Quantum Processor,” IEEE Micro, pp 24-34, March-April 2001.
[7] J. Patwardhan, C. Dwyer, A. Lebeck, D. Sorin. “NANA: A Nano-Scale Active
Network Architecture,” ACM Journal on Emerging Technologies in Computing Systems,
2(1):1-30, 2006.
[8] J. Patwardhan, V. Johri, C. Dwyer, A. Lebeck. “A Defect Tolerant Self-Organizing
Nanoscale SIMD Architecture” International Symposium on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2006.
[9] J. Patwardhn, C. Dwyer, A. Lebeck. “Self-Assembled Networks: Control vs.
Comlexity,” International Conference on Nano-Networks, 2006.
[10] Ethernet Back-off
[11] Y. K. Dalal and R. M. Metcalfe. “Reverse Path Forwarding of Broadcast Packets,”
Communications of the ACM, 21(12):1040–1048, 1978.
[12] David Goldberg. “What Every Computer Scientist Should Know About
Foatingpoint Arithmetic.” ACM Computing Surveys, 23(1):5-48, 1991.
[13] G.M. Amdahl, G. A. Blaauw, F.P. Brooks. “Architecture of the IBM System/360,”
IBM Journal of Research and Development, pp 87-102, April 1964.
[14] R.P. Brent, “On the Precision Attainable with Various Floating-Point
Number Systems," IEEE Transactions on Computers, C-22, pp. 601-07, 1973.
[15] Taken from http://ati.amd.com/products/radeonx800/index.html
[16]M. Ohmacht, R.A. Bergamaschi, S. Bhattacharya, A. Gara, et al. “Blue Gene/L
Compute Chip: Memory and Ethernet Subsystem,” IBM Journal of Research and
Development, Vol 49, pp 255, 2005.
[17] W. Kahan, “Why do We Need a Floating-Point Arithmetic Standard?,” 1981
[18] L. Tucker, G. Roberstson. “Architecture and Applications of the Connection
Machine.” IEEE Computer, pp 26-28, Aug. 1988.
[19] RISC Machines Ltd. “Fixed Point Arithmetic on the ARM”, Application Note 33,
1996.
[20]D. Connors, Y. Yamada, W. Hwu. “A Software-Oriented Floating-Point Format for
Enhancing Automotive Systems,” Workshop on Compiler and Architecture Support for
Embedded Computing Systems, 1998
[21] S.H. Park, C. Pistol, S.J. Ahn, J. Reif, A. Lebeck,C. Dwyer, T. LaBean. “Finite-
Size, Fully Addressable DNA Tile Lattices Formed by Hierarchical Assembly
Procedures,” Angewandte Chemie, 45:735–739, Jan. 2006.

