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Abstract

We expect emerging nanotechnology substrates to consist of a vast number of
small processing nodes that are randomly assembled, have defect rates as high as 30%,
and have globally asynchronous communication. Directly constructing an architecture
on such a substrate presents many challenges to a system designer. An alternative ap-
proach, that would ease the constraints faced by a nanotechnology architect, would be
to provide a layer of abstraction between the physical substrate and the architectural
design space that logically structures the system components.

We propose an abstraction layer that can impose a defect-free logical grid on ran-
domly oriented and randomly connected nodes. This layer is based on the observation
that logical neighbors in a network need not be constrained to physical neighbors but
instead can be connected through a series of communication hops. Our distributed
ordering algorithm guarantees that all nodes reachable from a micro-world connection
node will be included in the logical grid.

1 Introduction

The era of Moore’s Law and the exponential increases in CMOS device density that accom-
panies it is quickly reaching an end. Both economic and technological roadblocks stand
in the way of this trend that we have enjoyed for nearly half a century. In response to the
coming “red brick wall” predicted by the ITC roadmap, researchers have been investigat-
ing new devices fabricated on the nanometer scale. Such devices are likely to be created
using bottom-up self-assembly (e.g., using DNA), and as such lack the exacting precision
employed in top-down lithography.

In this work, we assume that a nanotechnology substrate is composed of a vast number
of small processing nodes connected in a network (e.g., [1]). Because self-assembly cannot
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produce large complex designs, each node has a very limited amount of storage and some
limited computational ability (e.g., a 1-bit ALU). Nodes are placed and connected in an
arbitrary topology network. Such a physical substrate leaves system designers with the
daunting task of implementing a system that can perform in the presence of massive defect
rates, random interconnections, and limited local computational and storage resources. The
potential reward, however, is great, since these devices can be created in previously unheard
of densities and at a fraction of the cost of a current CMOS process.

Few algorithms or computational paradigms have been designed that can operate on
such a substrate. As such, our goal in this work is to create a logical structure within the
system that serves as an abstraction layer between the physical substrate and the architec-
ture that will ease the burden on system designers. We identify the following as desirable
characterstics that a logical structuring scheme in a nanotechnology substrate should pos-
sess:

• high utilization Any structuring scheme should be able to include as a many defect-
free devices as possible in order to reap the benefits of a nanotechnology substrate.

• low implementation cost As nodes in a nanotechnology substrate are expected to
possess limited computational power and storage capacity, any logical structuring
mechanism must require no more than a few bits of storage and simple logic.

• low network contention The logical structure should not place unnecessary stress
on the communication network.

Our contribution in this work is a viable scheme for providing structure on a nan-
otechnology substrate. Specifically, we provide the abstraction of a fully-populated, two-
dimensional grid of nodes as a logical overlay to the substrate. A grid is uniform and easy
to program. Indeed, many preexisting computations are tailored to grid structures such
as cellular automata and matrix operations. We also provide an evaluation of our scheme
based on the above criteria and find that our scheme achieves the maximum utilization
possible, has a fraction of the implementation cost that is found in previous logical order-
ing schemes for CMOS substrates, and can achieve low network contention by enforcing
scheduled communication and by limited certain system parameters.

The remainder of this paper is organized as follows. Section 2 describes our fairly
generic system model and outlines the minimum resources that we assume present in the
system. Section 3 discusses related work. Section 4 describes our logical ordering tech-
nique in detail, and Section 5 discusses routing. Section 6 presents an evaluation of our
approach, and we conclude in Section 7.

2 Target Substrate

While our proposed technique is designed to be as general as possible, there are certain
basic system characteristics that are assumed. A target system is composed of many small
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processing nodes that are randomly connected to each other via at least a single-bit wire.
I/O communication occurs by way of any number of anchor nodes that are connected to
vias in the micro-scale world. A single anchor node connects to a single micro via. We
make no assumptions about node orientation, connectivity, placement or quantity of anchor
nodes, or the nature of the vias that connect to the nanocomputing substrate. We model
all defects in the system as fail-stop, such that any defect will cause a node to become
unresponsive.

3 Related Work

Most previous work on arbitrary topologies has been developed in the context of a CMOS
system with vastly more per node resources that those expected to be present in nanocom-
puting. Schemes to impose structure within local and wide area networks that are physically
connected in unordered meshes are especially prevalent in the literature. Two such schemes
in particular,the MetaNet [2, 3] and AutoNet [4] architectures, resemble the technique we
propose in that they embed logical trees and rings over the physical network. However,
because the LAN architectures were designed with different goals and for a system with
vastly more local resources, the resulting architectures contained many attributes that make
them infeasible in a nanotechnology network.

The work in arbitrary topology LANs was motivated by the desire to both provide struc-
ture in a network and, equally important, to maximize bandwidth. As such, the techniques
they used were designed to dynamically reduce contention in the network, which affected
the manner in which they structured and routed the nodes. For example, the complex rout-
ing algorithms in both architectures relied on the presence of large forwarding tables and
unique node identifiers. Due to the limited storage in a nanocomputing node, it would be
unreasonable to assume that routing tables could be present. This is especially true con-
sidering that destination IDs would have to be at least 40 bits in order to uniquely identify
all the nodes in a network, assuming a fabrication process could produce 1012 nodes as
reported in [1].

Other research in CMOS systems has been performed with the goal of implementing
a system that performs correctly in the presence of massive defect rates. The Teramac
multiprocessor machine built at Hewlett-Packard Laboratories was constructed using a mix
of defective and fault-free FPGA components. The researchers were able to build a system
that contained over 220,000 defects yet (correctly) performed 100 times faster than a high
end uniprocessor [5]. This achievement proved that it was possible to build a working
system in the presence of massive defects, although its direct application to bottom-up
nanotechnology fabrication is limited because the authors rely on an a priori knowledge of
fault mappings in the FPGAs in order to configure the components in a logical topology,
which is a luxury unlikely to be afforded in emerging nano-scale devices.

Patwardhan et al. [6] addressed the need for imposing structure on a nanocomputing
substrate similar to the target outlined in this work by adapting the reverse path forwarding
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algorithm [7] to provide gradient routing. While their method was successful in providing a
loose sense of direction for packets within the system, no absolute or deterministic structure
was created. Useful work in the system relied on the ability of active network packets to
find free processing or memory elements. The proposed scheme is much more general,
allowing for either homogeneous or heterogeneous nodes in the system and providing a
uniform, defect free logical structure on which to develop an architecture.

4 Distributed Logical Structuring Technique

It is the goal of this work to implement an ordering technique that has most of the fea-
tures provided by previous arbitrary topology structuring schemes designed for CMOS
substrates, yet is still implementable in a nanotechnology network. Such a technique needs
to be distributed, have minimal storage requirements, and be scalable to extremely high
node densities.

Our logical structuring technique is a three stage process that progressively transforms
the substrate into a logical tree, a ring, and finally into a fully populated two-dimensional
grid. The first two of these steps are similar to previous work in principle but not in imple-
mentation. In this section, we present our three stage process for imposing order, and we
describe how to route on this ordered network.

4.1 Step 1: Spanning Tree

The first step in our structuring technique is to create one or more spanning trees out of the
physical network. Considering the network as a graph, where nodes are vertices and links
are edges, this is done by performing a breadth-first traversal of the graph at each anchor
node. It has been proven that a bread-first traversal will include all nodes in the network
that are reachable by an anchor node [8]. As a result, the proposed technique will maximize
node utilization throughout the network.

A breadth-first traversal algorithm can be implemented efficiently in a nanotechnology
substrate by introducing a directional pointer and one bit of storage in each node. Tree cre-
ation begins when a tree-ring packet is injected into the network that indicates that the tree
formation procedure should proceed. When a node receives the tree-ring formation packet,
it marks the 1-bit indicator to remember that it has already been included in the network
traversal, sets the pointer to the parent node by remembering on which internal transceiver
the packet was received, and then broadcasts the signal to its remaining neighbors. For
reasons we will discuss shortly, the newly added child also sends an acknowledgment to
the parent indicating that it has just been inserted into to the tree. Nodes that have already
been initialized ignore incoming initialization packets, and as a result the procedure will
terminate when all nodes reachable from an anchor have been found. An example of an
embedded spanning tree is shown in Figure 1a.
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Figure 1: An example of the three stage ordering process. (a) An example network with
the embedded tree rooted at node 1. Dashed lines show the connections not involved in the
logical tree. (b) The resulting ring. Different virtual nodes are indicated by primes. The
shaded box represents the micro via that interfaces with the nanocomputing network. (c)
The resulting grid.
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4.2 Step 2: Ring

The second step is to embed a ring on each of the anchor-rooted spanning trees by per-
forming a depth-first traversal. The traversal progresses by proceeding deeper into the tree
whenever possible and backtracking otherwise. Because of the backtracking, the path that
a traversal takes around the tree forms a closed loop that begins and ends at the root node.
Any node that is not a leaf is in the tree is visited multiple times, and is thus located at sev-
eral positions along the closed loop path. So that we may map our ring along the traversal
path, we adopt the concept of virtual nodes. Each time the traversal touches a node, a new
virtual node is created that acts as the node’s representation at that point in the ring. In
general, the maximum number of virtual nodes needed is equal to the maximum number
of connections that a node can make (which is a function of the specific nanotechnology
substrate).

At the same time that the tree is being created, the virtual nodes of the embedded ring
can also be established by deterministically assigning virtual ring connections based on
the structure of the spanning tree. Child nodes of a parent in the spanning tree are given
a logical position based on the order in which acknowledgments are received, so that the
first child to respond becomes child one, the second becomes child two, and so on until
all children have acknowledged. Using the child ordering as a reference, the east and west
connections of the ring are assigned such that the connections of successive virtual nodes
follow the progression of parent-to-first child, first child-to-second child, ... last child-to-
parent.

For example, in Figure 1b, the east connection of the first virtual node of node 2 is
connected to its parent (node 1) and the west connection is connected to its first child (node
5). The second virtual node (node 2’) is created between the first child (node 5) and the
parent (node 1). If node 2 had a second child in the tree, then the process would be repeated
so that node 2’s second virtual node made a connection between its first and second child,
and the third virtual node would be connected to the second child and the parent. In Figure
1b, such a progression can be seen in node 3. Using this ordering technique to assign
virtual ring connections assures that the ring will always follow in the direction of a depth-
first traversal.

To implement this concurrently with the tree formation process, ring connection point-
ers within a node are adjusted each time a local connection in the tree is established. The
first virtual representation of a physical node is created when a node adds itself as a child
in the spanning tree. This virtual node sets both the east and west pointers to the parent
because at this point in the process the node appears to be a leaf in the spanning tree and
as such has only one path, the link to the parent, on which to communicate. When and if
a node receives an acknowledgment from one of the neighbors that it forwarded the tree
formation packet to, a new virtual node is created that has an east pointer set to the ac-
knowledging node and a west pointer set to the parent. Additionally, the west pointer of the
previously created virtual node is changed to point to the acknowledging neighbor node.
The final result is a ring that starts and ends with the micro via that is connected to an an-
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chor node (because it is the logical parent of an anchor node). Because this via is included
in the ring, we have maintained the ability to insert and remove data from the network.

4.3 Step 3: Rectangular Grid

The third and final step in the ordering technique is to fold the logical ring into a rectangular
grid. Of the four logical connections needed by an element in a uniform rectangular grid,
two of these (east and west) have already been established by the ring formation process.
The remaining two connections can be established by abstracting north and south neighbors
as N hops east or west, respectively, along the ring. Using uniform distance and direction
hops for north and south neighbors has the effect of slicing the ring into lines of length N
and stacking them on top of each other as shown in Figure 1c.

There are two issues that must be resolved when using the ring folding technique de-
scribed above. First, the nodes on the edges of the grid must be informed that they have
only a subset of the four possible neighbors. Second, unless the number of nodes in the ring
is a multiple of N, there will be excess nodes in the ring that will form an incomplete line in
the final grid row. The first of these problems can be solved by introducing a grid-formation
packet into the system that traverses the ring and structures the grid.

A data value in the grid formation packet will be incremented each time the packet is
received in a new node. When this value exceeds N, it will be reset to 1. Nodes that receive
the packet when the data is set to 1 mark themselves as being on the left side of the grid and
thus contain no west neighbor. Likewise, nodes receiving the packet when the data is set to
N mark themselves as being on the right side of the grid with no east neighbor. Eventually,
the micro via connected to the anchor node will receive the packet from the last virtual
node in the ring. When this happens, the data in packet represents the number of nodes E
that are excess in the last grid row. A final initialization packet, the forward-only packet,
can then be inserted in the opposite direction of the ring that the grid-formation packet was
sent. It marks the first E nodes as forward-only and is then sunk in the network, effectively
eliminating any nodes that form an incomplete last row from the logical grid. .

The north-most and south-most rows need no extra configuration because their north
and south neighbors, respectively, will be routed through the micro via. The decision of
what to do with that data can be made based on the operation being run in the network. If
the data was forwarded through the micro via, then the grid would roll into a cylinder such
as those used in several cellular automata applications [9]. If the via instead sinks the data,
the grid will remain flat.

Note that at no point during the ordering process does any part of the system require
global knowledge of the logical structures. The entire algorithm is distributed and requires
minimal storage, which will be quantified in Section 6..
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5 Routing

In our structuring scheme, the basic default routing is deterministic within the logical net-
work. A node may only communicate with its immediate virtual neighbors north, south,
east, and west by traveling the ring N hops west, N hops east, 1 hop east, or 1 hop west,
respectively. When a packet travels through the network it must specify both the ring direc-
tion it is traveling and the number of hops remaining to its destination. Routing thus needs
only to support directional movement along the ring, making it unnecessary to maintain
individual node IDs or complex routing tables as is done in previous work.

5.1 Routing Optimization

The static routing scheme above is simple enough to be viable in our target system, but it
sacrifices some performance. We attempted to minimize the performance penalty induced
by the default routing mechanism by investigating several routing optimizations. Ideally,
we would like to reduce the impact of the high network contention while concurrently
maintaining the simplicity afforded by the default routing.

5.1.1 Routing Through Shortcuts
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Figure 2: Routing Optimization Potential.
A boxplot of minimum inter-node routing
distance for varying logical grid widths (N ).

Within the logical network, links between
two virtual neighbors are at most N hops
away. Because the depth first traversal of
the spanning tree that created the logical
ring backtracks and because all routing oc-
curs along the ring, one would expect that
the physical distance between two nodes is
often much less than N . We refer to routing
optimizations that attempt to exploit this
observation as shortcut routing.

We evaluated the potential of shortcut
routing optimizations by finding the mini-
mum number of physical hops between two
logically separated neighbors. In our eval-
uation, we assume that nodes in the nan-
otechnology substrate can make up to four
connections with neighboring nodes and
that there are 1000 nodes with 1 anchor in
the network. The devices are modeled after those found in [6], although this choice was
arbitrary and does not impact the results. Figure 2 shows that the benefits are significant
when logical separation is large. For a logical separation of 100, which corresponds to
north and south neighbor communications in a logical grid with N = 100, the average
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physical distance between nodes is less than 15 hops and the longest physical separation
observed was only 54 hops. Because the maximum physical distance between two logical
neighbors is significantly less than the logical distance, the data confirms that it is com-
mon for the static routing technique to traverses the same physical link multiple times in
a single logical communication and indicates that there is a strong possibility for routing
optimizations.

We separate shortcut optimizations into two categories. The first is physical link for-
warding and the second is virtual node forwarding. Physical link forwarding involves
shortening the routing path by following a path of physical routing directions between log-
ical neighbors. These directions do not necessarily correspond to the links involved in the
logical network, and can include the links identified by dashed lines in Figure 1a. Virtual
node forwarding occurs when a packet internally hops from one virtual node to another.
For example, in Figure 1b, a packet that needed to travel from 5 to 2’ could be forwarded
from 5 to 5’ and then proceed to 2’.

Application of physical link forwarding requires the addition of routing tables and extra
routing logic in the nodes. The total storage needed to route through shortcuts depends on
the maximum number of connections that a node can make (C) and the maximum distance
that the shortcut can span (D). In general, a C-entry table will be needed with 2Dlog2(C)
bits per table entry. The factor of two is included because shortcuts for both north and south
directions must be maintained.

While a table of any non-trivial size would most likely be beyond the capabilities of
a nanotechnology node, we considered the effects of keeping a 2-entry table (D = 1)
for shortcuts 1 hop away. Individual entries would correspond to logical north and south
neighbors, respectively, and would be used to indicate when a logical neighbor was 1 hop
away. Such a scheme would keep routing simple and storage minimal. Figure 3 shows the
distribution of the minimum physical link distances between two logical north and south
neighbors in a grid of width 20. Similar results were obtained for grids of larger width, but
were omitted due to space constraints.

The data indicates that a 2-entry table would not yield a significant improvement in
routing, as the percentage of logical neighbors that are less than two hops away is small.
Moving beyond a one hop shortcut is difficult, as the complexity of routing logic grows
sharply because the routing no longer follows the path of the ring but instead must be
routed along physical node directions. Packets traversing the network would have to carry
with them a list of physical directions that indicate the path to take at each node along
the route. Thus, while the potential of physical link forwarding is great, the complexity it
introduces is not reasonable in a nanotechnology substrate.

The effects of virtual node forwarding were also studied. We found that, on average,
a 10% reduction in path length could be achieved when packets were allowed to forward
through virtual nodes. Implementing this optimization would require that a register of size
log2N bits, where N is the logical grid width, be kept for each virtual node. This register
would indicate the number of hops that could be skipped by a jump from one virtual node
to the next and would be used to calculate the shortcut distance for a packet traversing the
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ring. Additional logic would also have to be added to the nodes so that the forwarding paths
could be determined during initialization. Based on this data, we conclude that virtual node
forwarding is most likely not worth the cost of implementing.

5.1.2 Scheduling
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Figure 3: Histogram of physical node dis-
tances
The distribution of minimal physical distance
between logical neighbors in a grid. Odd dis-
tances are absent due to the nature of rout-
ing through a tree. The percentage of logi-
cal neighbors that are only one physical hop
away is small.

Depending on the specific architecture run-
ning on the logical grid, it may be possible
to optimize routing by enforcing schedul-
ing rules in the network. For example,
if a cellular automation was running in
the network, neighboring communication
could be synchronized such that all concur-
rent inter-node communication occurred in
a single direction along the ring. In a cellu-
lar automata program, the state of a node
on the next logical time step depends on
the state of its neighbors in the current time
step. Thus, every node in the system must
communicate with all of its neighbors be-
fore moving to a new state. If this com-
munication is synchronized, such that all
nodes communicate to their north, south,
east, and west neighbors at the same time,
then contention in the network would be
eliminated because all existing packets in
the network will move in the same direction
along the ring without passing one another.

Such a scheduling scheme can be en-
forced in a globally asynchronous substrate by issuing a total order of communication (i.e.
north first, east second, etc.) and by mandating that the number of packets sent by a node
is never more than one plus the number of packets received by the node.

Other scheduling optimizations may be possible, but they are dependent on the over-
laying architecture and as such are left to the system designer.

5.2 Deadlock

For any network to be useful, it must be able to avoid routing deadlock. Because of the log-
ical structure that we have already added to the network, we can use up/down routing that
has been proven deadlock-free [4]. Because the tree structure is built on top of individual
physical nodes, it can be used to assign the node degrees required in up/down routing to
physical links In such a scheme, communication with a parent node would be considered
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up routing and communication with all children would be down. Fetch deadlock, or re-
quest/response deadlock, is a function of the execution model running in the network, and
as such is a problem left to the designer of the overlaying architecture.

6 Evaluation

In this section, we evaluate our logical ordering scheme based on the three characteris-
tics identified as desirable for a logical structuring scheme: high device utilization, low
implementation cost, and low network contention.

6.1 Utilization

Figure 4: Utilization of Nodes vs. Node
Connectivity. A system of 1000 nodes and 1
anchor was evaluated to determine the degree
of node utilization in the logical network.

Cormen, et.al. [8] proved that a breadth
first search of an undirected graph will
touch every node reachable from the root.
As such, our technique is optimal given the
constraints of the target substrate. How-
ever, specific parameters of the target sub-
strate will affect the amount of utilization
our scheme is able to extract. To evaluate
the design, we found the node utilization
for varying link connectivities, measured as
the percentage of available links that are de-
fect free in the system. Figure 4 shows that
for connectivities above 70%, our scheme
is able to extract a nearly 100% utilization.
For connectivities below 50%, the nodes
within the network are too sparse and the
anchor node is not able to reach more than
a few neighboring devices.

6.2 Implementation Cost

The goal of our design is to provide logical ordering with minimal computation and storage
costs. In this section, we examine the costs incurred by our scheme.

The logic to handle the three initialization procedures must be added in the nodes. The
tree-ring formation packet requires the ability to broadcast a message to all the node’s
neighbors and send an acknowledgment to the parent. The grid-formation packet and
forward-only packet mandate that a small amount data can travel along with a packet. We
claim that neither of these system constraints are beyond the basic functionality that would
be required in any useful network, whether or not our logical ordering technique was used,
and as such are justifiable complexities in the system.
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In addition to the logic complexity needed for the proposed technique, a certain amount
of storage must also be present in the system. To support virtual nodes, we must replicate
anything considered to be architected state in the node, thus resulting in V a bits of over-
head, where V is the maximum number of virtual nodes allowed and a is the number of
bits of architected state. While this may seem like an unreasonable requirement given the
limited amount of resources, our initial node designs indicate that the architected state will
be dwarfed by the logic for inter-node communication and is thus only a small percentage
of the total inter-node communication.

Each node must maintain 2V + 1 pointers, where V is the maximum number of virtual
nodes in the system. Each virtual node must maintain a left and right pointer that indicate
neighbors in the logical ring. Another pointer is also required to remember the direction to
a node’s parent in the spanning tree. Pointers can be stored with a minimal amount of state,
as they need only indicate which internal transceiver to use in a given communication.

For deadlock avoidance using up/down routing, we must also add two virtual channels
to each node transceiver. Each virtual channel would need at least a one entry send and
receive queue. The size of the buffer would depend on packet sizes, and is thus a function
of the high level system architecture.

The largest overhead incurred by the proposed scheme is due to the N hop counting that
must be supported in packet communication. A buffer of size log2N + k, where N is the
logical grid width and k is a constant amount of bits that comprise the packet header, tail,
and data that are functions of the overlying architecture, must be present in each NI of each
virtual channel within a node. Additionally, each node must have the ability to subtract a
log2N number, although a bit-serial adder can be used to minimize the overhead required to
do so. Our estimates of the capabilities of nanotechnology nodes indicates that the choice
of N must be kept small for the proposed scheme to feasible.

Compared to previous ordering techniques in nanotechnology architectures, our imple-
mentation costs are slightly higher. However, the increased overhead provides a higher
degree of ordering the nanotechnology substrate than has previously been available. Pat-
wardhan et al. [1, 6] created logical structure by establishing five gradients in the network,
one for each global direction north, south, east, and west, and one to the micro via con-
nector much in the same manner that the tree formation packet operates in the proposed
technique. Routing is based on an active network architecture in which packets in the net-
work use the gradients as a compass to find resources scattered throughout the network.
Thus, to enforce structure and routing in the RPF architecture, a node needs 5 direction
pointers, two virtual channels, a k bit buffer at each NI, and routing logic to move packets
through the active network.

To quantitatively compare the proposed scheme to the previous work, we developed a
simple analytical model to evaluate area overhead. Our model is based on the following
parameters:

• a - The number of bits of architected state in each node.

• C - The number of connections a node can make. Also equal to V , the maximum
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number of virtual nodes allowed.

• N - The width of the logical grid in the proposed scheme.

• k - The number of bits of overhead in a communication packet (i.e. the header)
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Figure 5: Comparison of Overhead Cost
The X axis is bits of architected state (a), the
Y axis is the logical grid width (N), and the
Z axis is the relative increase in the bits of
storage needed for the proposed scheme over
that needed by the RPF algorithm previously
published

Equation 1 is the analytical model used
for the proposed sheme. It represents the
storage overhead costs, in number of bits,
as described above. We omitted the over-
head of the additional logic complexity
used by our mechanism because the spe-
cific overhead numbers are largely imple-
mentation dependent and are similar to the
prior work we are comparing to. Equation
2 is a corresponding analytical model for
the prior work that uses an RPF algorithm.
Figure 5 gives the ratio of these models (
storageproposed / storageprior ) as N and a

are varied while C and k are kept constant
at 4 and 8 respectively. As intuition would
suggest, the value of N has the greatest im-
pact on overhead. However, at small values
of N the relative overhead is kept low.

storageproposed =

Ca + (2C + 1)log2C+

2(C + 1)(log2N + k)

(1)

storageprior = a+5log2C+2(C+1)k (2)

6.3 Network Contention

The amount of contention in a network is highly dependent both on the physical parameters
of the substrate and the characteristics of the overlaying architecture. A list of variables that
determine the contention in a network include:

• connectivity - as link defect rates increase, a higher number of logical links will be
mapped over individual physical links.
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• width of logical grid - logical paths become longer as the grid size increases, which
elongates the amount of time a communication packet spends in the network.

• communication latency - the longer it takes for a packet to transmit, the less time a
link is free to accept a new communication

• computational latency - packets that take longer to operate on decrease contention
because communication rates are decreased.

• average source and sink rates - these architecture specific parameters impact the
amount of active packets present in a network at any given time.
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Figure 6: Evaluation of Network Con-
tention
Contention (evaluated as logical hops per
physical link) vs. logical grid width

Traditional measurements of network
contention would be meaningless in the ab-
sence of a well defined architecture or de-
vice parameters. Therefore, we quantify
network contention as the number of log-
ical hops per utilized physical link. This
metric captures the effect of the logical net-
work on contention by indicating how fre-
quently independent communications will
be forced to cross paths in the physical net-
work. Furthermore, it is a function of the
only variable listed above that is depen-
dent solely on the logical structure, the grid
width, and is therefore ideal for capturing
the performance consequences of the pro-
posed technique without having to account
for other parameters that are determined by
system designers.

Figure 6 shows the contention metric
for varying grid widths. As shown, the
network contention induced by the logi-
cal structure grows exponentially with grid
width. While this result is not promising, it
must be taken in context. The metric is only meant to reveal the worst case contention for
an architecture and physical implementation that communicate frequently and randomly.
Any architecture in which communication can be scheduled or where communication is
relatively infrequent will perform orders of magnitude better than Figure 6 indicates. How-
ever, the graph is useful in that it indicates that the grid width in a network should be kept
small to minimize contention. When N is large, even a small reduction in grid width will
yield significant performance enhancements.
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7 Conclusions

In this paper, we have presented a viable scheme for imposing ordering on a the type of
nanocomputing substrate that we expect to emerge. With self-assembled systems, we will
be restricted to small nodes (albeit vast numbers of them) and random interconnections.
We have shown a distributed algorithm for structuring this type of substrate into a grid that
can be more easily used for computation. Our scheme has similar goals to prior work in
logical topologies, but our contribution is in greatly reducing the storage and complexity
so as to make this approach feasible for nodes with limited resources.

Our results were not as promising as we would have liked, but with intelligent schedul-
ing the performance penalties could be managed. Further study needs to be done on meth-
ods to exploit the routing optimization potential in the logical network. Our estimates of
the capabilities of future nanotechnology substrates indicate that logical grid width must be
kept small so that the design can be implemented with small enough costs.
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