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Abstract 
 
 With the introduction of several new modalities for the detection of breast cancer, 
it has become even more important to implement computer-aided diagnostic models to 
help generate the best decisions from multiple tests, particularly when including 
multimodal data sets such as a mammogram and gene expression profile.  Decision 
fusion provides a statistical model that can best combine information from multiple tests, 
by taking into account the performance of each diagnostic as a detector of breast cancer.  
To show this, the promoter methylation levels of five specific genes (proven biomarkers 
of breast cancer) were analyzed in 19 known tumor tissue samples and 22 known normal 
tissue samples.  The individual performance of each gene as a detector of cancer was 
measured using Receiver Operating Characteristic (ROC) analysis.  The performance was 
also evaluated by calculating the area under the ROC curve (AUC).  The information 
from each gene was then combined using three fusion algorithms: decision fusion, a 
summation approach, and the linear discriminate analysis (LDA), which is a commonly 
used computer-aided diagnostic model for breast cancer.  All fusion methods resulted in 
improved diagnostic performance over that associated with any individual gene, 
emphasizing the need for computer-aided models that are able to fuse multiple diagnostic 
tests for breast cancer in the clinic.  Furthermore, decision fusion had the largest area 
under the curve (AUC) of all three models, proving it to be the best model in this case. 
 
Introduction 
 
 The incidence of breast cancer in women has steadily increased over the last 40 
years, but with improved screening methods and treatment procedures the overall 
survival rate is now 88% [1].  The regular use of mammography in the clinic has enabled 
breast cancer to be detected much earlier, and women diagnosed with tumors still in their 
earliest stages (localized or smaller than 2cm) have a five year relative survival rate of 
98% [2].  With these encouraging statistics, much research has been done in the 
development of innovative screening methods with higher sensitivity.  These improved 
screening methods are gradually being introduced into the clinic.  The overall accuracy of 
breast cancer diagnosis is extremely important, both in sensitivity and specificity.  While 
the need for detection, especially at early stages, has already been emphasized, it is also 
important to prevent false alarms that will put patients through unnecessary, costly, and 
painful treatments.  
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 Computer-aided diagnostic (CAD) models serve as valuable assistants to 
clinicians in making decisions based on screening data; and they can significantly 
improve both sensitivity and specificity.  Linear discriminate analysis (LDA) is a well 
established statistical technique, which has been successfully used in detecting masses in 
mammography [3].  However, LDA and other CAD models are generally used with only 
one set of data, such as a single mammogram image.  There has been very little emphasis 
on CAD models that will separate cancerous cases from normal case using multiple sets 
of data, potentially taken from different testing modalities.  This is unfortunate as it has 
been shown by Sahiner, et al. [4] that the fusion of extracted features from multiple 
modalities, in this case a mammogram and a 3D ultrasound, will increase the overall 
classification accuracy compared to single-modality classifiers. 
 
 Monitoring epigenetic alterations is a novel technique for the early detection of 
breast cancer, and it requires a multiple detector solution.  Modification in the expression 
of key regulatory genes is an early and frequent event in the development of breast cancer 
[5] and can therefore serve as a biomarker for the disease.  Promoter hypermethylation is 
a significant contributor to carcinogenesis through the resulting inactivation of tumour-
supressor genes [6].  A DNA-based approach for early detection of breast cancer has the 
potential to be very effective, since DNA extracted from patient’s plasma, serum or other 
body fluids can be amplified by PCR technology and achieve very high sensitivity [7].  
Since only small amounts of fluid are required, it would be a convenient clinical 
diagnostic test. 
 
 There has been a large number of published studies on specific genes with altered 
expression in the presence of cancer.  Widshcwendter and Jones [7] reviewed more than 
40 genes whose expression is lost in breast cancer because of promoter hypermethylation.  
In one study, Fackler, et al. [8] measured quantitatively the promoter methylation levels 
of RASSF1A, TWIST, Cyclin D2, HIN1 and RARβ [4] in the presence and absence of 
breast cancer.  They were able to show that the average level of methylation among 
tumor samples was significantly higher, although with varying degrees, for each of these 
five genes.  It was then necessary to combine information from all five genes to make the 
best decision on the presence of cancer.  The group chose a cumulative approach and 
summed the methylation levels across all five genes.  However, a quantitative assessment 
of promoter methylation conducted by Lehmann et al. [5] has clearly shown huge gene-
specific differences in the extent of methylation in tumor tissue.  By summing 
methylation levels, these differences are ignored and important diagnostic information is 
lost. 
 
 A more robust statistical approach is needed to incorporate each gene’s 
performance as a detector of cancer in the final decision.  This can be accomplished 
through a statistical algorithm called decision fusion.  Decision fusion requires that 
binary decisions are made independently at each detector.  These decisions are fused in 
the form of likelihood values that depend only on the known performance (sensitivity and 
specificity) of each detector.  The result is a fused set of likelihood values that can be 
compared to a threshold to make a final decision.  Decision fusion is advantageous 
because it handles heterogeneous data sources (multimodal data) well [9].  This is very 

-2- 



important in a clinical setting, where multimodal screening tests are quickly becoming a 
valuable option.   It also reduces the problem of dimensionality, and it is easy to use and 
interpret in a clinical setting [9].   
  
Methods 
 
Data: 
 
 The methylation data used in this experiment were provided by Saraswati 
Sukumar and Mary Jo Fackler of the Breast Cancer Program at Sidney Kimmel 
Comprehensive Cancer Center at Johns Hopkins.  Sets of DNA from 9 normal 
mammoplasty, 13 benign, and 19 tumor specimens were analyzed by quantitative 
multiplex methylation-specific PCR (QM-MSP) for gene promoter hypermethylation of 
RASSF1A, TWIST, Cyclin D2, HIN1 and RARβ [8].  The relative amount of 
methylation in each unknown sample was calculated as % M = 100 x [no. of copies of 
methylated DNA / (no. of copies of methylated + unmethylated DNA)] [8].  The raw 
methylation data can be seen in Figure 1 below.  Binary hypothesis testing was done, 
such that each sample fell in either H1 (tumor tissue) or H0 (normal/benign tissue).  The 
true cases were known for each sample from biopsy.  From this figure it is clear that 
higher levels of methylation generally occur in H1 than in H0.   
 

 
Figure 1.  Comparison of gene promoter hypermethylation  

in each gene under the two cases H1 and H0. 
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ROC Analysis: 
 
 The performance of each gene as a detector of cancer was determined 
independently.  Binary decisions were made on samples (blind as to the true case) for 
each gene such that if % M was greater than some threshold it was considered cancer 
(H1), and if it was less than that threshold it was considered normal/benign (H0).  
Receiver Operating Characteristic (ROC) analysis was used to measure the performance 
of each gene.  The decisions made by thresholding the methylation levels in each gene 
were compared to the true cases of each sample to produce the curve in Figure 2. 
 

 
Figure 2.  ROC analysis of each gene as a detector of breast cancer. 

 
 ROC analysis is shown graphically as a plot of the probability of a false alarm (1- 
specificity) verse the probability of detection (sensitivity).  Measuring both sensitivity 
and specificity takes into account the limitations of diagnostic "accuracy" as a measure of 
decision performance [10].   However, the sensitivity and specificity alone do not provide 
a unique measurement of diagnostic performance because they depend upon the arbitrary 
selection of a decision threshold [10].  The receiver operating characteristic (ROC) curve 
has been shown to be a simple yet complete empirical description of this decision 
threshold effect, indicating all possible combinations of the relative frequencies of the 
various kinds of correct and incorrect decisions [10].  The closer the curve falls to the 
upper left-hand corner the better the diagnostic performance, whereas decisions being 
made entirely at random will produce the straight line: probability of detection (Pd) = 
probability of a false alarm (Pf).   
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 Another measurement of performance is the area under the ROC curve (AUC), 
which approximates the probability that a randomly chosen sample will be correctly 
identified as either cancerous or benign [11].  The AUC can be seen for each gene in the 
table below. 

 
Table 1.  Area under the ROC curve for individual genes 
Gene RASSF1A TWIST Cyclin D2 HIN1 RARβ 
AUC 0.72 0.79 0.56 

 
0.64 0.64 

 
Cumulative Approach: 
 
 Three decision algorithms were implemented to combine the methylation levels 
from all five genes and allow decisions to be made based on this multiple detector data 
set.  The first algorithm was a cumulative approach in which the methylation levels (%M) 
for all five genes in a sample were summed.  The final sums, one from each sample, were 
hypothesis tested such that any sample with a cumulative methylation value of greater 
than some threshold was considered to be in H1, and any sample below that threshold was 
considered to be in H0.     
 
Linear Discriminate Analysis: 
 
 The second approach used was Linear Discriminate Analysis, a commonly used 
computer-aided diagnostic (CAD) model.  This algorithm forms an optimal linear 
combination of the multi-dimensional data that maximizes the group mean separation of 
the tumor and normal objects [12].  The LDA algorithm was executed in Matlab to find 
the linear function that best separated H1 and H0 and to provide the probability that each 
sample fell within H1, given its position relative to the separating function.  These 
probabilities were compared to a threshold and a decision was made of H1 or H0. 
 
Decision Fusion: 
 
 Decision fusion was also performed on the data.  In this procedure, separate 
decisions were made using the data from each gene independently.  Five individual 
thresholds were selected such that each gene/detector had approximately a 10% false 
alarm rate, or 90% specificity.  The 90th quantile of the raw data known to be in H0 was 
used as the threshold.  Each sample was compared to the threshold and individual 
decisions were made for each gene: d = 0 for H0 and d = 1 for H1.  By comparing the 
decision made for each sample to its true state, the probability of detection and false 
alarm for each gene were calculated.  The five decisions (k = 5) made for each sample 
were fused in the form of a likelihood ratio. 
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 Each decision was assumed to be statistically independent.  This was shown to be 
a reasonable assumption by Yuwei Liao, even in the case of dependence [13].  The 
decision fusion algorithm thus became the product of the individual likelihood ratios 
from each detector, which depended only on the performance (Pd and Pf) of each 
detector.   
 

 
 The likelihood values were compared to a threshold, and a final decision for each 
sample was made.  A schematic of the decision fusion method can be seen in Figure 3.   

 
Gene 1 

Gene 5 

…
 

ROC for Gene 1

ROC for Gene 5

…
 

d1=0/1 

d5=0/1 

Decision 
Fusion λ

 
 

Figure 3.  Schematic of the Decision Fusion Process 
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Results 
 
 The ROC analysis of the cumulative method, LDA, and decision fusion can be 
seen in Figure 4.  The decision fusion method has two parts shown, an experimental 
result and an upper bound.  For the experimental decision fusion curve, the final 
decisions made using decision fusion were compared to their true cases, and the 
algorithm’s performance was evaluated with ROC analysis.  The upper bound is the ideal 
curve that would have resulted using decision fusion, given the same detector 
performance if the local decisions were truly statistically independent.  The two decision 
fusion curves are similar, but the ideal curve has a slightly better performance.  The 
discrepancy between the two may be a result of some degree of dependence between 
genes, but it is not clear since such limited data were used.  However, it is clear from the 
ROC curve that decision fusion was able to achieve a higher sensitivity at a higher 
specificity than either LDA or the cumulative method. 
 

 
 

Figure 4.  ROC analysis of the performance of decision fusion,  
LDA, and the cumulative method. 

 
 
 The performance of the three decision algorithms also was evaluated using the 
area under the curve metric, which can be seen in Table 2.  The results for all three fusion 
methods were better than the performance of any individual gene.  TWIST, which was 
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the best local detector, had an AUC that was ten percent lower than experimental 
decision fusion.  The cumulative method out-performed TWIST by a very small margin 
and had the lowest performance of the fusion algorithms, of which decision fusion again 
performed the best.  Although a cross-validation of these fusion methods would be 
desirable, the limited amount of data (31 samples) in this preliminary study did not lend 
itself to separate training and testing sets of reasonable size.   
 
 
Table 2.  AUC for each Decision Algorithm 

Decision 
Algorithm 

Ideal Decision 
Fusion 

Experimental 
Decision Fusion 

LDA Cumulative 
Method 

AUC  
 

0.93 0.89 0.85 0.81 

 
   
 
Conclusion 
  
 Breast cancer is still a serious health issue and its diagnosis is extremely 
important.  The many screening options for breast cancer, whether currently in the clinic 
or still being researched, should be taken advantage of to give patients the most accurate 
diagnosis possible.  Our results have clearly shown that fusing multiple detector data can 
significantly increase diagnostic sensitivity and specificity.  Decision fusion provides a 
statistical approach that can optimally combine multiple detector data by including the 
performance of each local detector.  A summation approach, which weights the 
performance of each detector equally, loses important diagnostic information, evidenced 
by the lower performance of this method, which achieved only a slight improvement over 
that of a single detector.   Diagnostic information is not lost using linear discriminate 
analysis, but it is difficult to implement on multimodal data without alterations to the raw 
data.  Finally, decision fusion proved to be the best fusion algorithm in this case, when its 
performance was measured via ROC analysis. 
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