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Abstract

Spike sorting is a critical component in the brain machine interface.  The traditional objective 
of spike sorting is to classify each spike, or action potential, in a multi-unit waveform into a separate 
class representing the neuron that fired the spike. A major problem in spike sorting is the variable and 
unknown number of classes. This paper investigates the efficacy of sorting neural signals into two 
classes - a dominant class, which ideally includes spike occurrences of the most prominent neuron, and 
a remainder class, which ideally includes spike occurrences of all other distinguishable neurons - rather 
than sorting into the ‘correct’ number of classes. This results in fewer classification errors, since 
classifications amongst neurons in the remainder class do not have to be made. A simulated neural 
dataset consisting of 30 multi-unit signals each with 4 distinguishable, or near-field, neurons was 
created using Matlab. The signals were represented as orthogonal ‘features’ by performing principle 
component analysis of the spike waveforms. Two clustering algorithms, k-means and expectation 
maximization using a Gaussian mixture model (GMM EM), were used on the first two principle 
component scores of each signal. Clustering was performed with the number of classes initialized with 
values 2, 3, 4, and 5. After sorting, the most prominent cluster was assigned to the dominant class and 
all other clusters were assigned to the remainder class. The correct and false classifications were 
determined and analyzed. Initializing the sorting algorithms to sort the data into the number of near-
field neurons or one more than the number of near-field neurons and then determining the dominant 
and reminder classes had the least classification errors for both algorithms. Initializing the number of 
classes to one less than the number of near-field neurons caused a marginal increase in errors. Initially 
sorting the data into two classes resulted in much greater classification error. Overall, the k-means 
algorithm performed better on average, but the GMM EM performed better when initialized with 
appropriate seeds.

Introduction

Brain machine interfaces use extracellular electrodes to acquire neural signals. The electrodes 
record a signal that is the summation of the potentials of multiple neurons surrounding an electrode. 
Multiple signals are then processed and used to actuate a prosthetic device.  It is desirable to have fully 
implantable systems with wireless data acquisition hardware instead of transcutaneous wires to 
communicate between the electrodes and the prosthesis. However, telemetry in all wireless systems is 
limited by bandwidth. Consequently, instead of transmitting the raw data recordings, spike detection is 
used to transmit only the action potential waveforms and their arrival times, which compresses the data 
sent. Ideally, only the spike occurrences need to be transmitted. However, this requires sorting the 
detected spikes into separate groups, or classes, for each distinguishable neuron surrounding the 
extracellular electrode (Lewicki 1998).



An in vivo, real-time system must implement an autonomous spike sorting algorithm. 
Traditionally, the goal of spike sorting is to classify each distinguishable action potential in the multi-
unit signal into separate classes representing the neuron that fired the action potential. A major 
problem in spike sorting is the variable and unknown number of distinguishable neurons that 
contribute to a recorded signal. This corresponds to number of classes in which the signal should be 
sorted. The number of classes is important since it is used to initialize most sorting algorithms. 
Unfortunately, there is no general and satisfactory solution to determine the number of classes. 
Bayesian statistical approaches can be used to determine the probable number of classes; however 
these models are limited in spike sorting applications by their underlying assumptions (Cheeseman and 
Stutz 1988, Chickering and Heckerman 1997, DasGupta and Raftery 1998, Lewicki 1998).

This paper investigates sorting neural signals into two classes: a dominant class which ideally 
includes spike counts of the most prominent neuron, and a minor class which ideally includes spike 
counts of all other distinguishable neurons.  The classification results in a single-unit dominant class 
and a single-unit or multi-unit remainder class depending on the number of distinguishable neurons in 
the signal. The overall classification errors are lower because the conventional sorting errors amongst 
neurons in the remainder class are no longer errors, since the previously disparate classes are grouped 
into one. 

Although one might suspect that grouping of classes results in loss of information, there is 
evidence that an unsorted multi-unit signal may contain as much or more information as a sorted signal 
with a reasonable 15% discrimination error (Wheeler and Heetderks 1982, Harris et al 2000) under 
certain conditions (Won and Wolf 2003). Having two classes also has the benefits of limiting and 
fixing the bandwidth per electrode, which facilitates implementation of the BMI. Furthermore, since 
the average number of distinguishable neurons is between 2 and 3 (Nicolelis et al 1997, Reich et al 
2001), it is reasonable to select 2 as the number of classes.

The question that is addressed here is: What is the best way to group action potentials in multi-
unit signals into dominant and remainder classes? To explore this, both k-means and an expectation 
maximization algorithm using a Gaussian mixture model were used to cluster the first two principle 
component scores of neural signals. Both algorithms were initialized with a different number of classes 
ranging from 2 to 5. After the clustering algorithms were run, the resulting clusters were grouped into 
dominant and remainder classes.

Methods

Creation of Data Sets: 
Matlab was used to generate all signals and perform all spike sorting. The stimulated signals 

were composed of three parts: action potentials from near-field neurons, action potentials from far-
field neurons, and thermal noise. The near-field neurons produced the distinguishable and large action 
potentials in a neural signal. The background noise was composed of far-field neuron action potentials 
and thermal noise. 4 near-field neurons each with unique amplitudes and 40 far-field neurons were 
modeled to create each signal. Each simulated near-field and far-field neuron was assigned a unique 
action potential waveform from a database of waveforms recorded in vivo from owl monkeys and 
macaques. All action potential waveforms consisted of 46 data points sampled at 31.25 KHz, were 
aligned by their minimum peak, and were normalized using their minimum peak amplitude.  

The firing times of each near-field and far-field neuron were assumed to occur according to a 
Poisson random process with a mean firing parameter between 20 and 30 Hz. Thus, a unique sequence 
of firing times was generated for each neuron with a Poisson number generator. For each modeled 
neuron in a signal, identical action potentials from the database were placed in the signal at the times 
determined by the Poisson generator. Subsequently, all spike times failing to meet a minimum 
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refractory period of 2 milliseconds were eliminated and all overlapping near-field action potentials 
were removed from the signal. 

After the separate near-field and far-field neuron signals were created, both were up-sampled to 
a rate of five times their original frequency. A thermal noise signal, modeled by white Gaussian noise 
with standard deviation of 1 microvolt, was summed with the far-field neuron signal to comprise the 
overall noise signal. Next, both the noise and near-field neuron signal was band-passed through a two 
pole Butterworth filter with poles of 450 and 6500. The signals were then down-sampled back to the 
original sampling rate and summed together to create the final signal. The resulting signals were one 
second long and had a sampling rate of 31.25 KHz.  Spike times and classes of all near-field neurons 
for each signal were recorded during signal generation.

Thirty signals were generated using the method described above with varying near-field and 
far-field amplitude ratios. Three different sets of ratios were used to produce three groups each 
comprised of 10 signals named ‘Low,’ ‘Medium,’ and ‘High’ after their resulting signal to noise 
ratio(SNR). The signal to noise ratio of each near-field neuron was calculated using the formula:

)(
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≠=    (1)

where 0|)( ≠isisRMS  refers to the root mean square of the non-zero terms of the ith near field neuron. The 
mean and standard deviation of the SNR for each near-field neuron in each of the three groups of 
signals are described in Table 1.  Example signals from each of the groups of data along with their 
firing patters are shown in Figure 1.

 
Neuron 1
 

Neuron 2
 

Neuron 3
 

Neuron 4
 

Overall
 

 Mean STD Mean STD Mean STD Mean STD Mean STD
Low 
SNR 1.96 0.26 1.76 0.30 1.27 0.14 1.01 0.15 1.50 0.21
Mediu
m SNR 2.49 0.42 2.18 0.43 1.88 0.30 1.22 0.17 1.94 0.33
High 
SNR 3.19 0.46 2.54 0.66 1.88 0.25 1.43 0.22 2.26 0.40

Table 1: The mean and standard deviation SNR for low SNR, medium SNR, and high SNR datasets.
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Figure 1: Signal waveform with firing pattern for low SNR, medium SNR, and high SNR datasets.

Data preparation: Detection and PCA
Rather then using a spike detection algorithm, the known spike times from signal generation 

were used to isolate all spikes in a signal. The peaks of the spikes were then aligned on the known 
negative peak of the original action potential (before the noise signal was added to the near-field 
signal). The action potential waveforms were isolated by taking 15 data points to the left of the 
negative peak and 30 data points to the right of the negative peak, totaling 46 data points or about 1.5 
milliseconds. The detected and aligned spikes are shown in Figure 2 for a Low SNR signal and in 
Figure 3 for a High SNR signal. After the detection and alignment of the spikes, principle component 
analysis (PCA) was performed on the detected action potential waveforms.

Cluster Analysis:
Cluster analysis was performed on the first two principle component scores using two different 

clustering algorithms: k-means and expectation maximization using a Gaussian mixture model. The k-
means algorithm was initialized with data points selected at random from the dataset. The covariance 
and mean matrices for the Gaussian mixture model were initialized using a k-means algorithm that was 
also initialized with random seeds. Since random seeds were used, each method of clustering was 
performed 20 times for a given number of initial classes.

The Gaussian mixture model represents each class with a multivariate Gaussian distribution. 
Given a specific class, the probability that spike x was generated from neuron ck, the likelihood, was 
modeled by: 
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where },...,,{ 11:1 KKk ΣΣ=Θ µµ and kµ  and kΣ  are the mean and covariance matrix of the PCA 
coefficients for waveforms in class ck . The probability that a data point was a member of a given class 
was determined by:

∑ Θ
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where )( kcp  is the probability of  class k, or the relative firing frequency of class k. The class 
parameters were maximized by maximizing the overall likelihood of the data:

∏
=

Θ=Θ
N

n
kkkn cxpxp

1
:1:1:1 ),|()|(      (4)

In this study, the expectation maximization algorithm proposed in Dempster et al (1977) was 
used to find the parameters of the Gaussian mixture model. After the algorithm was run, hard cluster 
boundaries were determined by assigning a data point to the class with the greatest probability of 
membership.

Cluster analysis of each of the 30 generated signals was performed using both the k-means and 
expectation maximization clustering algorithms initialized with a different number of classes, ranging 
from 2 to 5. The cluster that had a centroid with the closest Euclidean distance to the mean of the data 
points representing the most prominent neuron was assigned to the dominant class. The most 
prominent neuron was defined as the neuron in the signal with the greatest amplitude. All other 
clusters were then grouped into the remainder class. Correct classifications were defined when a spike 
originating from the most prominent neuron (known a priori from data generation) was classified as 
belonging to the dominant class, or when a spike from any other near-field neuron was classified as 
belonging to the remainder class. Each signal was sorted with each clustering algorithm and each 
initial class number 20 times with different initial seeds. The mean of the classification results of the 
20 trials and the classification results for the trial with the minimum number of classification errors 
were both recorded.
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Figure 2: Detection and alignment of action potential for each near-field neuron with low SNR. 

 
Figure 3: Detection and alignment of action potential for each near-field neuron with high SNR.
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Results

The results are presented in three parts. First, the clustering results of two example signals, one 
signal with a low SNR and one signal with a high SNR, are graphically displayed to better demonstrate 
the signals used, clustering procedures, selection of the dominant and remainder classes, and 
determination of correct and incorrect classifications. Second, the overall mean results obtained from 
taking the mean of the correct classifications (CC) and incorrect classifications (IC) over the 20 trials 
performed on each signal are presented. Third, the overall minimum error results are presented. The 
minimum error results were obtained by choosing the classification out of the 20 trials that resulted in 
the minimum number of errors.

Figure 4 and 5 show the classification results for an example low SNR signal from the k-means 
and expectation maximization algorithm with 2, 3, 4, and 5 classes. Figures 6 and 7 show the 
classification results for an example high SNR signal. The different color data points in all figures 
correspond to the actual near-field neuron responsible for firing the action potential, with the green 
color always representing the most prominent neuron. This is known from signal generation. The black 
diamonds show the means of the data points for each near-field neuron. The crosses show the centroids 
of the clusters determined by the sorting algorithms.  

All data points outlined in a dark circle were determined by the sorting algorithm to be in the 
dominant class. All data points not outlined by a dark circle were determined by the sorting algorithm 
to be in the remainder class. Correct classifications result when a green data point is outlined in a dark 
circle (an action potential from the most prominent neuron is determined to be in the dominant class) 
or a blue, yellow, or red data point is not outlined by a dark circle (an action potential not from the 
most prominent neuron is determined to be in the remainder class). False classifications result when a 
green data point is not outlined by a dark circle or a blue, yellow, or red data point is outlined by a dark 
circle.  The number of correct classifications and false classification resulting from the sorting is 
summarized in Table 2. 

  
2 classes 3 classes

 
4 classes
 

5 classes 

  CC IC CC IC CC IC CC IC
Low 
SNR 

K-Means 
(fig 4) 75 6 77 4 77 4 69 12

 
GMM EM 
(fig 5) 71 10 75 6 71 10 68 13

High 
SNR 

K-Means 
(fig 6) 75 10 85 0 77 8 85 0

 
GMM EM 
(fig 7) 75 10 85 0 75 10 75 10

Table 2: Classification results summary from example signal classifications shown in Figures 4-7.
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Figure 4: K-means clustering of a low SNR signal with 2, 3, 4, and 5 classes.

Figure 5: GMM EM clustering of a low SNR signal with 2, 3, 4, and 5 classes.
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Figure 6: GMM EM clustering of a high SNR signal with 2, 3, 4, and 5 classes.

Figure 7: GMM EM clustering of a high SNR signal with 2 , 3, 4, and 5 classes.
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Each of the four plots in Figures 4-7 demonstrates the result of a single classification with 
random seeds. Similar classifications were performed 20 times for each signal. The results of 
classification are presented in two ways: (1) the mean of 20 classifications (2) the one classification out 
of the 20 classifications that had the minimum errors.  The summary of mean results is displayed 
graphically in Figure 8 and Figure 9 and numerically in Table 3. Likewise, the summary of the 
minimum error results are displayed in Figure 10, Figure 11, and Table 4.       

K-means: Mean Results
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Figure 8: The mean classification results using 
the k-means algorithm.

GMM EM: Mean Results
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Figure 9: The mean classification results using 
the GMM EM algorithm.

Table 3: Summary of correct classifications (CC) and incorrect classifications (IC) for the mean 
classification results.

 

  2 classes 3 classes 4 classes 5 classes 
  CC IC CC IC CC IC CC IC
Low K-means 74.24% 25.76% 86.20% 13.80% 90.48% 9.52% 90.32% 9.68%
 GMM EM 74.99% 25.01% 84.58% 15.42% 87.05% 12.95% 87.57% 12.43%
Med K-means 74.85% 25.16% 88.86% 11.15% 92.64% 7.36% 93.61% 6.39%
 GMM EM 74.55% 25.45% 87.94% 12.06% 91.15% 8.85% 90.87% 9.13%
High K-means 83.08% 16.92% 97.58% 2.43% 98.18% 1.82% 97.22% 2.78%
 GMM EM 79.98% 20.02% 94.19% 5.82% 96.53% 3.47% 96.06% 3.95%
Average K-means 77.39% 22.61% 90.88% 9.12% 93.77% 6.23% 93.72% 6.29%
 GMM EM 76.51% 23.49% 88.90% 11.10% 91.58% 8.42% 91.50% 8.50%
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K-means: Minimum Error Results
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Figure 10: The minimum error classification 
results using the k-means algorithm.

GMM EM: Minimum Error Results
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Figure 11: The minimum error classification 
results using the GMM EM algorithm.

  2 classes 3 classes 4 classes 5 classes 
  CC IC CC IC CC IC CC IC
Low K-means 78.73% 21.27% 88.53% 11.47% 94.48% 5.52% 95.19% 4.81%
 GMM EM 83.81% 16.19% 93.22% 6.78% 94.25% 5.75% 94.02% 5.98%
Med K-means 84.24% 15.76% 92.53% 7.47% 96.97% 3.03% 97.31% 2.69%
 GMM EM 86.54% 13.46% 94.83% 5.17% 96.86% 3.14% 96.19% 3.81%
High K-means 87.28% 12.72% 99.11% 0.89% 99.88% 0.12% 99.88% 0.12%
 GMM EM 95.43% 4.57% 99.77% 0.23% 99.77% 0.23% 99.77% 0.23%
Average K-means 83.42% 16.58% 93.39% 6.61% 97.11% 2.89% 97.46% 2.54%
 GMM EM 88.59% 11.41% 95.94% 4.06% 96.96% 3.04% 96.66% 3.34%
Table 3: Summary of correct classifications (CC) and incorrect classifications (IC) for the minimum 

error classification results.

Discussion

The results demonstrated that performing cluster analysis on a signal with 4 near-field neurons 
with the initial number of classes set to 4 or 5 yielded the least errors. Cluster analysis with the initial 
number of classes set to 2 yielded the most errors. Also, it was demonstrated that the k-means 
algorithm performed better on average, but the GMM EM performed better when initialized with 
appropriate seeds.

From the mean results, it was determined that initializing sorting algorithms to sort the data into 
the number of near-field neurons (4 classes) or one more than the number of near field neurons (5 
classes) and then determining the dominant and reminder classes had the least classification errors (K-
means error[4] = 6.23%,  GMM EM error[4] = 8.42% & K-means error[5] = 6.29%,  GMM EM 
error[5] = 8.50%, respectively).  Sorting the data into one fewer class than the actual number of near-
field neurons (3 classes) resulted in slightly greater error (K-means error[3] = 9.12%,  GMM EM 
error[3] = 11.10%) Sorting the data into 2 classes initially resulted in much larger error (K-means 
error[2] = 22.61%, GMM EM error[2] = 23.49%). 

The minimum error results showed a similar pattern. Sorting  the data into the number of near-
field neurons (4 classes) or one more than the number of near-field neurons (5 classes) yielded the least 
error (K-means error[5] = 2.54%, GMM EM error[5] = 3.34% & K-means error[4] = 2.89%,  GMM 
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EM error[4] = 3.04 %, respectively). Sorting first into 3 and 2 classes resulted in a greater number of 
errors, with sorting into 2 classes resulting in the most errors (K-means error[3] = 6.61%, GMM EM 
error[3] = 4.06% & K-means error[2] = 16.58%,  GMM EM error[2] = 11.41%, respectively).

The k-means clustering algorithm performed better on average than expectation maximization 
algorithm using a Gaussian mixture model. However, the GMM EM algorithm performed better when 
the seeds for algorithm initialization were better chosen. This demonstrates the sensitivity of the GMM 
EM algorithm to initial seed parameters. It also demonstrates the ability for the GMM EM algorithm to 
better classify the data than the k-means algorithm when initialized with appropriate seeds. 

The least errors resulted when the data was clustered using the GMM EM algorithm with the 
initial classes set to 4 or 5 classes. This is because 4 Gaussians modeled 4 near-field neurons well. 5 
Gaussians also modeled 4 near-field neurons well because in some cases 2 Gaussian distributions 
model the data for a single neuron. Figure 7D demonstrates this phenomenon. The most errors resulted 
when the Gaussian mixture model was used with the initial classes set to 2. This occurred because a 
Gaussian distribution poorly approximates the multiple clusters in the remainder class. Figure 7A 
demonstrates this phenomenon. Unlike a Gaussian distribution, the data points making up the 
remainder class would have dearth of data points in the center, since it would likely be between 
clusters. Perhaps modeling the remainder cluster with a different distribution, such as a uniform 
distribution, would yield better results.

The results show a general pattern that clustering the data with the initial class parameter set to 
the true number of distinguishable neurons yields the least amount of classification error when the 
clusters are regrouped into dominant and remainder classes. Unfortunately, this algorithm would still 
require the spike sorting system to determine the number of classes, or distinguishable neurons, in the 
recorded signal. Thus, the problem of determining the correct number of initial classes persists. 
Although this study examined the best way to group a multi-unit signal into 2 classes, future work 
must be done to quantify the information gained or lost as a result of classification.

Limitations
The use of simulated datasets provides realistic signals with known spike times, neuron classes, 

and waveform morphologies. Since the true spike classes are known from signal generation, the results 
of sorting were compared to this known information to qualify whether a spike is correctly or 
incorrectly classified.  If empirical in vivo data were used, the spike times and neuron classes would 
not be known a priori to compare to the sorting algorithms’ results.

Several assumptions were made to generate the signals. First, it was assumed that each neuron 
induces identical waveforms at the recording electrode each time that it fires.  This obviates the need to 
model membrane dynamics and models a system with no electrode drift. Second, firing times were 
assumed to occur according to a Poisson process. This provides signals with known mean firing times 
without predefined firing patterns. Thirdly, no overlaps were included in the signals. Although this 
does not correctly model a true neural signal, it creates an ideal signal for testing clustering algorithms. 
When two neurons fire at the same time, the resultant waveform recorded is the summation of the 
electrical contributions of both neurons. In clustering analysis these waveforms are undesirable since 
these waveforms do not fit into any class representing one neuron. Furthermore, outliers, which 
correspond to overlapping spikes, are not sufficiently described by the first two principle component 
scores (Lewicki 1998).There are several methods to remove overlaps or model overlaps as originating 
form one neuron by subtraction methods before clustering (Jansen 1990, Chandra and Optician 1997, 
Lewicki 1994). However, rather than use a specific method to account for overlaps, a signal without 
overlaps assumes an ideal method that has already accounted for all overlaps, and allows for an 
independent analysis of the clustering algorithms.

Spike detection is the first step in spike sorting where all spikes of distinguishable neurons are 
identified and their waveforms isolated. There are numerous spike detection algorithms including 
threshold, energy, and matched filter with varying degrees of efficacy (Obeid and Wolf 2004). Since 
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all signals were generated, the known spike times were used to locate all spikes of the near-field 
neurons from the overall signal. This obviates the need to select any of the many detection algorithms. 
By using known spike times of the signal, ideal spike detection was achieved where all true spike and 
no false spikes are detected. Thus, all errors can be attributed to the sorting process.

Since both k-means and expectation maximization algorithms are iterative and converge to a 
local minimum, they are sensitive to initial seeds. There are various initialization techniques for both 
clustering algorithms, all of which affect the results of clustering (Wood et al 2004). Rather than 
choose a deterministic method to initialize the algorithms, random seeds were used to initialize the k-
means algorithm. The Gaussian mixture model’s covariance and mean matrices were initialized with 
the results of a k-means algorithm that was initialized with random seeds. The use of random seeds 
precludes a deterministic outcome and allows for a general analysis of the clustering algorithms. To 
analyze the effects of the initial seeds, each algorithm was run 20 times on each signal with each 
number of initial classes. Then, the mean of the results of clustering for the 20 trials and the result with 
the least errors out of the 20 trials was determined. The mean results demonstrate the average 
clustering results using a random seed algorithm and shows the sensitivity to initial seeds of both 
algorithms. The minimum error results demonstrate the classification results if the best initial seeds 
from the 20 trials were used. Thus, if more ideal seed initialization algorithm were used to select the 
initial seeds, results closer to the minimum error results could be expected.

A priori information from signal generation was used to choose the dominant class; 
specifically, the mean of data points from the most prominent neuron. However, this information 
would not be known in an autonomous spike sorting system and another criterion would have to be 
used. A simple algorithm could choose the class with the greatest SNR ratio or greatest average 
maximum or peak to peak amplitude. Another algorithm could use the Gaussian mixture model, which 
quantifies the certainty of classification results. The probability that a spike is classified in a particular 
class is known (see equation 3). This can be used to determine the class that statistically has the least 
errors (Lewicki 1998). This class can be chosen as the dominant class, thus minimizing the overall 
errors.

Conclusion

Several methods to classify spikes in a multi-unit signal into dominant and remainder classes 
were suggested and tested. Classifying a neural signal into dominant and remainder classes could 
minimize the overall classification errors and leave a multi-unit remainder class that contains a 
significant amount of information. It also fixes the bandwidth per electrode making implementation of 
such an in vivo sorting system easier. It was determined that initializing both k-means and GMM EM 
algorithms with the number of classes equal to the number of distinguishable neurons or one more than 
the number of distinguishable neurons yielded the minimum number of errors. Initializing the 
algorithms with one less class yielded marginally more errors, while initializing the sorting algorithms 
to two classes yielded the most errors. Thus, a sorting system implementing such an algorithm would 
have to determine the number of distinguishable neurons to get the best results. Also, it was shown that 
the GMM EM algorithm could achieve better results when initialized with appropriate seeds, however 
the k-means algorithm performed better on average. 
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Appendix

 A1. Mean results for 10 signals with high SNR signal. 

 
2 classes
 

3 classes
 

4 classes
 

5 classes
 

 CC IC CC IC CC IC CC IC
K-means 88.24% 11.76% 92.35% 7.65% 93.53% 6.47% 95.35% 4.65%
GMM EM 88.24% 11.76% 92.00% 8.00% 90.53% 9.47% 93.24% 6.76%
K-means 100.00% 0.00% 98.65% 1.35% 97.63% 2.37% 96.79% 3.21%
GMM EM 91.35% 8.65% 100.00% 0.00% 99.04% 0.96% 97.69% 2.31%
K-means 83.33% 16.67% 99.52% 0.48% 97.80% 2.20% 95.65% 4.35%
GMM EM 83.81% 16.19% 97.20% 2.80% 95.77% 4.23% 92.38% 7.62%
K-means 73.03% 26.97% 98.88% 1.12% 98.93% 1.07% 98.26% 1.74%
GMM EM 82.08% 17.92% 89.66% 10.34% 95.79% 4.21% 96.63% 3.37%
K-means 53.53% 46.47% 98.82% 1.18% 98.47% 1.53% 98.41% 1.59%
GMM EM 52.59% 47.41% 93.65% 6.35% 96.65% 3.35% 97.65% 2.35%
K-means 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 95.32% 4.68%
GMM EM 80.91% 19.09% 92.34% 7.66% 95.84% 4.16% 95.78% 4.22%
K-means 76.15% 23.85% 89.67% 10.33% 98.79% 1.21% 98.30% 1.70%
GMM EM 73.13% 26.87% 87.20% 12.80% 97.03% 2.97% 95.71% 4.29%
K-means 72.73% 27.27% 98.86% 1.14% 99.83% 0.17% 98.86% 1.14%
GMM EM 70.23% 29.77% 93.81% 6.19% 97.44% 2.56% 96.48% 3.52%
K-means 100.00% 0.00% 99.00% 1.00% 99.00% 1.00% 98.40% 1.60%
GMM EM 89.80% 10.20% 99.70% 0.30% 99.30% 0.70% 98.70% 1.30%
K-means 83.76% 16.24% 100.00% 0.00% 97.82% 2.18% 96.88% 3.12%
GMM EM 87.65% 12.35% 96.29% 3.71% 97.94% 2.06% 96.29% 3.71%
Average         
K-means 83.08% 16.92% 97.58% 2.43% 98.18% 1.82% 97.22% 2.78%
GMM EM 79.98% 20.02% 94.19% 5.82% 96.53% 3.47% 96.06% 3.95%
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A2. Mean results for 10 signals with medium SNR signal.

 
2 classes
 

3 classes
 

4 classes
 

5 classes 

 CC IC CC IC CC IC CC IC
K-means 75.64% 24.36% 100.00% 0.00% 99.10% 0.90% 97.37% 2.63%
GMM EM 91.67% 8.33% 94.81% 5.19% 95.83% 4.17% 95.83% 4.17%
K-means 75.00% 25.00% 93.00% 7.00% 97.38% 2.63% 95.63% 4.38%
GMM EM 69.75% 30.25% 86.75% 13.25% 96.50% 3.50% 97.19% 2.81%
K-means 100.00% 0.00% 99.88% 0.12% 99.52% 0.48% 99.40% 0.60%
GMM EM 92.77% 7.23% 99.76% 0.24% 99.64% 0.36% 99.64% 0.36%
K-means 79.41% 20.59% 79.41% 20.59% 88.68% 11.32% 89.04% 10.96%
GMM EM 68.16% 31.84% 80.07% 19.93% 85.07% 14.93% 82.65% 17.35%
K-means 68.20% 31.80% 83.72% 16.28% 91.86% 8.14% 90.93% 9.07%
GMM EM 65.35% 34.65% 87.15% 12.85% 86.57% 13.43% 89.65% 10.35%
K-means 54.05% 45.95% 65.54% 34.46% 74.66% 25.34% 84.59% 15.41%
GMM EM 54.39% 45.61% 63.99% 36.01% 75.07% 24.93% 72.70% 27.30%
K-means 69.83% 30.17% 81.11% 18.89% 89.28% 10.72% 96.06% 3.94%
GMM EM 67.72% 32.28% 90.22% 9.78% 91.61% 8.39% 93.39% 6.61%
K-means 77.47% 22.53% 97.68% 2.32% 95.20% 4.80% 92.02% 7.98%
GMM EM 87.58% 12.42% 97.07% 2.93% 95.30% 4.70% 92.32% 7.68%
K-means 81.05% 18.95% 88.21% 11.79% 93.05% 6.95% 93.47% 6.53%
GMM EM 80.00% 20.00% 84.63% 15.37% 88.74% 11.26% 88.68% 11.32%
K-means 67.80% 32.20% 100.00% 0.00% 97.68% 2.32% 97.56% 2.44%
GMM EM 68.11% 31.89% 94.94% 5.06% 97.20% 2.80% 96.65% 3.35%
Average         
K-means 74.85% 25.16% 88.86% 11.15% 92.64% 7.36% 93.61% 6.39%
GMM EM 74.55% 25.45% 87.94% 12.06% 91.15% 8.85% 90.87% 9.13%
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A3. Mean results for 10 signals with low SNR signal.

 
2 classes
 

3 classes
 

4 classes
 

5 classes
 

 CC IC CC IC CC IC CC IC
K-means 92.59% 7.41% 94.51% 5.49% 91.23% 8.77% 89.44% 10.56%
GMM EM 83.95% 16.05% 86.91% 13.09% 87.72% 12.28% 85.99% 14.01%
K-means 44.19% 55.81% 66.28% 33.72% 87.79% 12.21% 93.49% 6.51%
GMM EM 54.65% 45.35% 73.78% 26.22% 81.69% 18.31% 85.12% 14.88%
K-means 73.58% 26.42% 84.72% 15.28% 92.92% 7.08% 90.71% 9.29%
GMM EM 69.95% 30.05% 82.41% 17.59% 89.25% 10.75% 86.70% 13.30%
K-means 48.86% 51.14% 71.52% 28.48% 84.24% 15.76% 88.80% 11.20%
GMM EM 58.16% 41.84% 67.66% 32.34% 75.57% 24.43% 82.47% 17.53%
K-means 67.06% 32.94% 76.41% 23.59% 86.41% 13.59% 84.29% 15.71%
GMM EM 63.18% 36.82% 72.59% 27.41% 74.18% 25.82% 79.76% 20.24%
K-means 64.52% 35.48% 79.57% 20.43% 84.68% 15.32% 86.29% 13.71%
GMM EM 65.75% 34.25% 82.26% 17.74% 84.41% 15.59% 87.26% 12.74%
K-means 98.75% 1.25% 97.50% 2.50% 92.63% 7.37% 91.38% 8.62%
GMM EM 98.25% 1.75% 97.31% 2.69% 95.63% 4.37% 93.38% 6.62%
K-means 72.69% 27.31% 95.00% 5.00% 96.81% 3.19% 97.31% 2.69%
GMM EM 75.88% 24.13% 95.94% 4.06% 96.81% 3.19% 95.56% 4.44%
K-means 81.59% 18.41% 97.73% 2.27% 93.81% 6.19% 89.20% 10.80%
GMM EM 80.51% 19.49% 88.47% 11.53% 88.41% 11.59% 85.06% 14.94%
K-means 98.59% 1.41% 98.80% 1.20% 94.30% 5.70% 92.25% 7.75%
GMM EM 99.65% 0.35% 98.45% 1.55% 96.83% 3.17% 94.37% 5.63%
Average         
K-means 74.24% 25.76% 86.20% 13.80% 90.48% 9.52% 90.32% 9.68%
GMM EM 74.99% 25.01% 84.58% 15.42% 87.05% 12.95% 87.57% 12.43%
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A4. Minimum error results for 10 signals with high SNR signal.

 
2 classes
 

3 classes
 

4 classes
 

5 classes 
 

 CC IC CC IC CC IC CC IC
K-means 88.24% 11.76% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
GMM EM 88.24% 11.76% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
GMM EM 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 95.24% 4.76% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
GMM EM 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 73.03% 26.97% 98.88% 1.12% 100.00% 0.00% 100.00% 0.00%
GMM EM 98.88% 1.12% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 65.88% 34.12% 98.82% 1.18% 98.82% 1.18% 98.82% 1.18%
GMM EM 69.41% 30.59% 98.82% 1.18% 98.82% 1.18% 98.82% 1.18%
K-means 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
GMM EM 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 82.42% 17.58% 94.51% 5.49% 100.00% 0.00% 100.00% 0.00%
GMM EM 98.90% 1.10% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 72.73% 27.27% 98.86% 1.14% 100.00% 0.00% 100.00% 0.00%
GMM EM 98.86% 1.14% 98.86% 1.14% 98.86% 1.14% 98.86% 1.14%
K-means 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
GMM EM 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
K-means 95.29% 4.71% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
GMM EM 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Average         
K-means 87.28% 12.72% 99.11% 0.89% 99.88% 0.12% 99.88% 0.12%
GMM EM 95.43% 4.57% 99.77% 0.23% 99.77% 0.23% 99.77% 0.23%
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A5. Minimum error results for 10 signals with medium SNR signal.

 
2 classes
 

3 classes
 

4 classes
 

5 classes 

 CC IC CC IC CC IC CC IC
K-means 75.64% 24.36% 100.00% 0.00% 99.10% 0.90% 97.37% 2.63%
GMM EM 91.67% 8.33% 94.81% 5.19% 95.83% 4.17% 95.83% 4.17%
K-means 75.00% 25.00% 93.00% 7.00% 97.38% 2.63% 95.63% 4.38%
GMM EM 69.75% 30.25% 86.75% 13.25% 96.50% 3.50% 97.19% 2.81%
K-means 100.00% 0.00% 99.88% 0.12% 99.52% 0.48% 99.40% 0.60%
GMM EM 92.77% 7.23% 99.76% 0.24% 99.64% 0.36% 99.64% 0.36%
K-means 79.41% 20.59% 79.41% 20.59% 88.68% 11.32% 89.04% 10.96%
GMM EM 68.16% 31.84% 80.07% 19.93% 85.07% 14.93% 82.65% 17.35%
K-means 68.20% 31.80% 83.72% 16.28% 91.86% 8.14% 90.93% 9.07%
GMM EM 65.35% 34.65% 87.15% 12.85% 86.57% 13.43% 89.65% 10.35%
K-means 54.05% 45.95% 65.54% 34.46% 74.66% 25.34% 84.59% 15.41%
GMM EM 54.39% 45.61% 63.99% 36.01% 75.07% 24.93% 72.70% 27.30%
K-means 69.83% 30.17% 81.11% 18.89% 89.28% 10.72% 96.06% 3.94%
GMM EM 67.72% 32.28% 90.22% 9.78% 91.61% 8.39% 93.39% 6.61%
K-means 77.47% 22.53% 97.68% 2.32% 95.20% 4.80% 92.02% 7.98%
GMM EM 87.58% 12.42% 97.07% 2.93% 95.30% 4.70% 92.32% 7.68%
K-means 81.05% 18.95% 88.21% 11.79% 93.05% 6.95% 93.47% 6.53%
GMM EM 80.00% 20.00% 84.63% 15.37% 88.74% 11.26% 88.68% 11.32%
K-means 67.80% 32.20% 100.00% 0.00% 97.68% 2.32% 97.56% 2.44%
GMM EM 68.11% 31.89% 94.94% 5.06% 97.20% 2.80% 96.65% 3.35%
Average         
K-means 74.85% 25.16% 88.86% 11.15% 92.64% 7.36% 93.61% 6.39%
GMM EM 74.55% 25.45% 87.94% 12.06% 91.15% 8.85% 90.87% 9.13%
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A6. Minimum error results for 10 signals with low SNR signal.

 
2 classes
 

3 classes
 

4 classes
 

5 classes 

 CC IC CC IC CC IC CC IC
K-means 92.59% 7.41% 94.51% 5.49% 91.23% 8.77% 89.44% 10.56%
GMM EM 83.95% 16.05% 86.91% 13.09% 87.72% 12.28% 85.99% 14.01%
K-means 44.19% 55.81% 66.28% 33.72% 87.79% 12.21% 93.49% 6.51%
GMM EM 54.65% 45.35% 73.78% 26.22% 81.69% 18.31% 85.12% 14.88%
K-means 73.58% 26.42% 84.72% 15.28% 92.92% 7.08% 90.71% 9.29%
GMM EM 69.95% 30.05% 82.41% 17.59% 89.25% 10.75% 86.70% 13.30%
K-means 48.86% 51.14% 71.52% 28.48% 84.24% 15.76% 88.80% 11.20%
GMM EM 58.16% 41.84% 67.66% 32.34% 75.57% 24.43% 82.47% 17.53%
K-means 67.06% 32.94% 76.41% 23.59% 86.41% 13.59% 84.29% 15.71%
GMM EM 63.18% 36.82% 72.59% 27.41% 74.18% 25.82% 79.76% 20.24%
K-means 64.52% 35.48% 79.57% 20.43% 84.68% 15.32% 86.29% 13.71%
GMM EM 65.75% 34.25% 82.26% 17.74% 84.41% 15.59% 87.26% 12.74%
K-means 98.75% 1.25% 97.50% 2.50% 92.63% 7.37% 91.38% 8.62%
GMM EM 98.25% 1.75% 97.31% 2.69% 95.63% 4.37% 93.38% 6.62%
K-means 72.69% 27.31% 95.00% 5.00% 96.81% 3.19% 97.31% 2.69%
GMM EM 75.88% 24.13% 95.94% 4.06% 96.81% 3.19% 95.56% 4.44%
K-means 81.59% 18.41% 97.73% 2.27% 93.81% 6.19% 89.20% 10.80%
GMM EM 80.51% 19.49% 88.47% 11.53% 88.41% 11.59% 85.06% 14.94%
K-means 98.59% 1.41% 98.80% 1.20% 94.30% 5.70% 92.25% 7.75%
GMM EM 99.65% 0.35% 98.45% 1.55% 96.83% 3.17% 94.37% 5.63%
Average         
K-means 74.24% 25.76% 86.20% 13.80% 90.48% 9.52% 90.32% 9.68%
GMM EM 74.99% 25.01% 84.58% 15.42% 87.05% 12.95% 87.57% 12.43%
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