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1.0 Introduction 

1.1 Motivation 

Tracking and sensing of human activities is performed using a variety of techniques in an even 

wider range of applications.  Healthcare policy makers [2], providers of online advertisements, 

and motion detectors all use sensors to infer the behavior of individuals or groups of people to 

achieve a certain purpose.  These purposes are clearly very different, as are the types of 

information collected and their meanings.  Systems designers encounter many choices for 

sensing applications, concerning what type of information to collect, by what method, and with 

what precision.  This paper considers the precision requirements for a behavioral model that uses 

time-stamped location data.  The goal is to develop and explore a method of quantifying the 

impact of mobility data precision on the accuracy of human behavioral modeling. 

1.2 Application for Detailed Study 

One specific application for behavior inference from individual mobility data may be to measure 

compliance by hospital or clinic staff with established hand washing regulations.  With the 

incredible importance of cleanliness in a healthcare environment, it is important for hospitals and 

clinics to know that their staff members are keeping their hands clean – or, if not, to develop 

programs to increase compliance [1, 7].  There are many rules concerning when, and how, one’s 

hands must be washed in this setting, and some of these rules can be applied to information about 

a person’s movements over time.  The application of these rules to mobility tracking data will 

constitute the model for study in this paper. 

1.3 Expected Outcome 

The developed model is expected to be extremely sensitive to the precision of the input mobility 

data.  The same is likely to be true of the model’s sensitivity to internal parameters concerning 

the formation and application of rules for interpreting behavior.  These sensitivities will reflect 

the complexity of modeling human behavior, the arbitrariness of certain assumptions inherent to 

the model, and the need for very precise data for developing accurate models. 

2.0 Background 

2.1 Tracking, Sensing and Behavior Inference 

Motion is sensed in many ways and on different scales [3] (see Figure 1, below).  For example, 

navigational GPS (Global Positioning System) units in vehicles allow for a very large-scale 

tracking application to view movement over miles.  At the same time, RFID (Radio Frequency 

Identification) sensors track packages and inventory in factories, stores, and libraries for motion 

over a few feet.  Neither technology (GPS nor RFID) is suitable for the opposite-scale 

application.  Precision is important, but how much is necessary for sensing significant events? 
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Figure 1 Scales of Sensing Human Motion and Example Methods 

 

The answer to this question is clearly dependent on the model used to detect and measure 

significant events.  The tradeoff between cost and precision of input data can also be analyzed as 

a tradeoff between cost and accuracy of model interpretation.  RFID sensors lining every major 

road may provide more accurate sensing of the location of one’s vehicle, but the marginally 

increased accuracy over GPS does not justify the considerably increased cost. 

 

Tracking in this application appears to fall somewhere between the mid- and small-scales of 

human motion sensing.  Different behaviors will be distinguished by locations of a few feet or 

less, requiring a high level of precision in mobility data.  Certain behaviors (is this person 

washing his/her hands, or rinsing out a glass?) simply cannot be distinguished through location 

data, but these differences will be ignored for the sake of this paper. 

2.2 Hand Washing Studies 

Hospitals and health care researchers have a great deal of interest in improving compliance with 

hand washing guidelines among staff.  While one of the simplest methods of preventing the 

spread of communicable diseases and patient infections, health care workers tend to average 

under 50% compliance
1
 [4-8], and wash for less time than recommended [6].  Previous studies 

([7], e.g.) have analyzed the effectiveness of campaigns to improve compliance, and revealed 

that staff members frequently overestimate the frequency of their own hand washing [1].  More 

frequent and/or more detailed studies may provide more insight into responses to pro-compliance 

campaigns. 

 

Determinations of hand washing compliance do not occur more frequently in part because they 

are costly: studies are conducted by hiring observers to watch for recommended washing 

opportunities in high-risk areas [5-8].  An automated system for measuring hand washing could 

conceivably improve rates for many types of compliance by simply making data more frequently 

– or more individually – available.  There are certainly many restrictions to the uses of such a 

system, as our models cannot (yet, at least) replace human intuition for which observed events 

meet certain criteria.  However, a location-based system could, at the least, provide a starting 

                                                      
1
 It should be noted that guidelines for hand washing are intentionally very strict and very specific.  Their rigidity 

makes it impractical to expect full compliance in a realistic setting.  That said, health professionals have for years 

recognized the problems with such low compliance rates, and are actively engaged in improving them. 
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point for collecting and analyzing widespread data for many common situations in which hand 

washing is required. 

 

Some specific guidelines (adapted from [1] and [5]) for hand washing will provide a basis for the 

model: 

• Hands must be washed before contact with a patient during an examination. 

• Hands must be washed after contact with a patient, before exiting the examination room. 

• Hands must be washed immediately after use of lavatories. 

• Hands must be washed for 10-15 seconds. 

2.3 Uses and Limitations of GPS 

The source of data for a hand washing detection system could be small-scale sensors, such as 

RFID tags (sensing a staff member’s ID tag close to a sink), or more mid-scale technology, such 

as GPS.  GPS (of some form) provides a tempting option, as the data may already be available 

through electronic devices.  Specifically cell phones, which must be locatable in the event of a 

911 call, employ tracking mechanisms.  Location mechanisms in mobile phones are actually 

extremely precise when placed within clear sight of at least two cell towers.  Indoors, however, 

cell phones – or any other GPS device – may not provide the desired precision and accuracy of 

information [3].    In a hospital, the accuracy of this data is weakened by attenuation (buildings), 

interference (hospital equipment), multipath (inside and between buildings), and location 

masking (through repeaters).  By quantifying the impact of these inaccuracies on model fidelity, 

this paper should shed light on the requirements of the data collection mechanism(s) employed in 

a behavior modeling system. 

3.0 Methodology 
In order to assess the effect of data precision loss on the accuracy of a model, it was necessary to 

first develop a model for measuring hand washing compliance.  This required (1) a method for 

representing contextual data (such as room and sink locations), (2) a construct for mobility data, 

(3) a set of rules for determining what data patterns constitute a required wash, an actual wash, 

etc., (4) a sizeable set of sample data to degrade and run through the model, and (5) an interface 

for loading mobility data and retrieving statistics.  Item (1) is discussed in section 3.1.1, (2) is 

found in 3.1.2, (3) is covered in 3.2, (4) is described in F, and item (5) is demonstrated in section 

3.4. 

 

This section will describe the general approach to each step in building and running the model 

and data sets, as well as some details about the implementation.  Unless otherwise noted, each 

software component was written in Java 6 SE and executed on a Windows platform. 



4 

 

3.1 Data Models 

Models for representing the floor plan and tracked movement data shared certain characteristics 

that made the information easy to link during processing.  Both models assume a simple 

Cartesian coordinate system in two dimensions.  The models are dimensionless, but require 

integer coordinates.  This leaves scale open and arbitrary, but easy to manipulate through linear 

scaling factors.  The implication here is that any coordinate system should be transformable onto 

a grid, like the one shown in Figure 2, and that the tracking and floor plan data will be conveyed 

in the same scale for use on the same grid. 

3.1.1 Floor Plan Modeling 

The floor plan shown below in Figure 2 represents part of an actual clinic recently constructed in 

Sublette County, Wyoming [9].  This plan was used in all data generation and interpretation, but 

its presentation to the system was in a general form that could represent most floor plans.  The 

floor plan model assumes that all rooms are rectangular, so that their regions can be indicated 

through the listing of only two diagonally opposite points.  The grid overlay and highlighting in 

the image below were added manually. 

 

 
Figure 2 Floor Plan with Grid Overlay and Sink Highlighting 

 

Shown below in Figure 3 is a textual representation of the same floor plan as show above, with a 

few adjustments.  The first line of the file establishes a grid size for the entire floor plan.  Each 

subsequent line lists the name of a location, the (rectangular) bounds on that location, and a type.  

Location types are used to identify different types of events so that rules may be applied 

accurately in the behavioral model.  (That is, the rules that govern hand washing in an 
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examination room are quite different than those for offices.)  A class called LocationManager is 

responsible for reading in the floor plan data and creating Location objects for each room.  The 

Locations include information about their regional limits, name, and type. 

 

It is important to note that certain locations overlap, such as Exam3 and Sink_Exam3.  The model 

takes a hierarchical approach to “nested” locations, where locations listed earlier are given higher 

rank.  The model assumes that one cannot enter a nested location without first (or 

simultaneously) entering the parent location, or exit a parent location without first (or 

simultaneously) exiting the nested location.  Therefore, if an individual is observed using the 

sink in Exam 3, the model infers that s/he is in fact in Exam 3; if they then leave Exam 3, they 

must have also stopped using the sink.  This is performed in the LocationManager by storing an 

ordered list of Location objects (highest order to lowest) for each point in the grid (which is 

simply a two-dimensional array).  This approach, which is pointer-centric and therefore 

inexpensive from a storage point of view, translates any (x,y) coordinate into an ordered list of 

Location objects in O(1) time. 

 

 
Figure 3 Textual Representation of Floor Plan for System Entry 

 

The major difference between the above file and the earlier floor plan is the inclusion of multiple 

“corridors,” which are in fact three rectangular regions (subject to the restriction mentioned 

earlier
2
) that together comprise the entire hallway of the clinic. 

3.1.2 Tracking Data 

Tracking data utilizes the same grid as the floor plan data.  Each entry consists of an individual 

identifier, a time (arbitrary, integer units; generally assumed to be seconds), an x-coordinate, and 

a y-coordinate.  Coordinates are subject to the same restrictions as the points of the floor plan: 

                                                      
2
 The restriction was made for the sake of simplicity.  It is not an inherently necessary part of the model; rather, it 

assists with verifying that a point falls within the bounds of a known location.  The modifications needed to remove 

the restriction are not terribly difficult; they are, however, entirely unnecessary for the floor plan used. 
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they must fall within the grid boundaries specified in the first line of the floor plan input file, and 

they must be integers.  The addition of a unique identifier with each point makes possible the 

inclusion of data for an unlimited number of individuals in a single file (as shown in the sample 

file section below in Figure 4).  Each individual is represented by a User object, which handles 

the addition of each new tracking point for that individual.  The function of User objects is 

described more fully in the next section, 3.2, which covers the behavioral model. 

 

 
Figure 4 Sample Tracking Data for Multiple Users 

3.2 Behavior Model 

The operation of the behavioral model is demonstrated in Figure 5, below.  As tracking data 

points are given to a User object, the User asks the LocationManager for a list of Locations 

associated with the point.  At each step, the User keeps track of its last Locations, so that Events 

can be generated when any Location changes occur.  Event objects have start and end times, an 

associated Location, and a type.  Event types include the entrance into an examination room, 

exiting an exam room, starting a hand washing, etc.  One conceptual “event,” then, is represented 

by two Event objects.  For example, a patient examination will consist of a “start examination” 

event and a “stop examination” event.  Both events will have the same start and end times, but by 

storing Events in the order they occur, conceptual events can be nested properly (see the explanation of 

nested locations in section 3.1.1, above). 

 

There are two major advantages to this approach.  First, it is concise and intuitive: rather than an 

arbitrarily large number of location data points representing an individual’s time spent in one 

location, the entire duration is described in two symmetrical Event objects (the start Event’s end 

time is updated with each new point, but no new objects are created).  Second, the symmetry of 

events makes the application of Rules (described below) much simpler: both the start and end of 

a conceptual event are demarked by chronologically accurate Event objects.  For example, 

determining which events ended after another began involves a simple linear search for ending 

Event objects ordered after the start Event in question. 
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Figure 5 Steps in Compliance Analysis from Mobility Data 

 

Rules are designed to be flexible, if not generic.  The objects are described by a six-tuple: 

• Trigger event type – the type of event that triggers a hand washing requirement 

• Trigger event duration – the minimum duration of the trigger to require a hand wash 

• Before or after trigger point – direction in which to apply time window (before or after) 

• Trigger start or end – point from which to apply time window (start or end of event) 

• Time window – time during which a hand washing event must either begin, or end 

• Compliant event duration – time spent at sink to count as a compliant wash 

 

An example rule states that if a started examination lasts more than 120 seconds, a hand wash 

event of at least 10 seconds in duration must begin within 40 seconds after the start of the 

examination.  The rule is represented as 

• Trigger event type = start exam (i.e., individual enters examination room) 

• Trigger event duration – 120 seconds 

• Before or after trigger point – after 

• Trigger start or end – start 

• Time window – 40 seconds 

• Compliant event duration – 10 seconds 
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The Rule definitions and the structure of the Event list allow “before” events to be searched for 

in reverse order, and “after” events to be discovered in normal order.  Each User object has a 

Statistics object that contains information about how many “opportunities” (i.e., required hand 

washing events) were observed, how many “actual” (compliant) hand washes occurred at 

opportunities, as well as the number of “additional” (no matching opportunities) hand washes 

were found for the list of Events the User experienced.  Rule and User objects are together 

responsible for updating the Statistics object of a User, given a Rule, a list of Events, and an old 

Statistics object. 

3.3 Data Generation 

A software tool was developed to randomly generate sample tracking data for a single person.  

The tool reads in a floor plan using a LocationManager (as described earlier in section 3.1.1), but 

additionally requires sinks to be listed immediately after the rooms in which they are located in 

the input file (this requirement is met by the sample input floor plan show earlier in Figure 3).  

The DataGenerator object keeps separate lists of Locations by type (examination room, 

bathroom, or other non-sinks) as well as matching sinks with each examination room and 

bathroom. 

 

Data is generated by randomly selecting a Location type (examination rooms are more likely to 

be selected than bathrooms, and both are more likely than other types), and then choosing a 

Location uniformly from among the available Locations of that type.  If the Location chosen is a 

bathroom or examination room, a random number decides if the individual will start or end 

his/her time in the Location by washing his/her hands (that is, at the sink associated with the 

room) so as to comply with hand washing guidelines.  If a sink is not chosen as the starting point, 

the individual begins in the center of the room and moves according to another random 

distribution (each point is written to an output file).  The duration of time spent in each room is 

determined when the Location is chosen.  Locations continue to be chosen until a specified 

amount of time has elapsed in the simulation.  The format of the output file matches the 

requirements for loading it into the model for analysis. 

3.4 Interface and Statistics 

A text-based interface is used to control the software system and read the generated statistics.  

Upon execution, the software opens a file chooser dialog to ask for floor plan data, then for the 

tracking data to load.  Once successfully loaded, the command line interface becomes active, 

with commands available as shown in the help file, copied in Figure 6 below. 
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Figure 6 Text-based GUI Help File 

 

 

After data is loaded, the <list> command 

will show all individuals (and groups) 

for which data is available.  The <show> 

command will print out the statistics.  

Individual statistics include hand wash 

“opportunities”, “successes,” and 

“additional” washes along with a 

computed rate of compliance.  Groups 

can be added, changed, and removed at 

will.  In addition to the collective 

compliance statistics shown for an 

individual, group statistics show mean, 

minimum, and maximum compliance 

rates among individuals in the group, as 

well as the standard deviation. 

4.0 Results 

4.1  Parameters for Generated Data 

Eight hours of tracking data for a single staff member were generated stochastically using the 

generation tool described in section 3.3, based on the floor plan input file shown in Figure 6.  

Table 1 below shows the value of the probability parameters that describe where the user is likely 

to go, for how long, and with roughly what level of hand washing compliance.  Properties 

describing location type and compliance were described in section 3.3.  The coordinate change 

distribution describes how likely the individual is to move away from their current location (the 

probability is applied separately to the x- and y-coordinates, positive and negative directions are 

applied uniformly).  Finally, time spent in each location was determined by choosing a range (0-

5min, 5-10min, 10-15min) based on the probabilities shown below, then choosing a time 

uniformly from within that range. 
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Property Probability Property Probability 

Location type = exam 0.5 Comply on exam enter 0.68 

Location type = bathroom 0.3 Comply on exam exit 0.51 

Location type = other 0.2 Comply on bath exit 0.73 

    

Coordinate change = 0 0.60 Location time < 5 min 0.3 

Coordinate change = 1 0.20 Location time < 10 min 0.9 

Coordinate change = 2 0.12 Location time < 15 min 1.0 

Coordinate change = 3 0.08   

Table 1 Probability Values for Stochastic Tracking Data Generation 

 

Data was then additionally transformed to represent degradation in location data precision.  That 

is, a single set of source data was used to compute degenerate data across three levels of lower 

precision.  The stochastically produced file was generated at a resolution of 1’x1’.  An Excel 

spreadsheet was used to modify this data so that it mapped onto points in a 2’x2’, 3’x3’, or 5’x5’ 

grid.  Each data point was mapped to the closest, lower integer multiple of the dimension at hand 

(in a form similar to x_new=FLOOR(x_old/dim)*dim), and then shifted to a point within its 

newly assigned dimxdim square.  All permutations (4 for 2’x2’, 9 for 3’x3’, and 25 for 5’x5’) 

were computed and run through the model.  The statistics graphed in Figure 7 and Figure 8, 

below, use the average of all permutations for each precision level. 

4.2 Rules 

There were three rules for hand washing applied to the data for each precision level.  They are 

defined below in Table 2, according to the method described in section 3.2. 

 

Parameter Rule 1 Rule 2 Rule 2 

Trigger Event Type Start Exam End Exam End Bathroom 

Trigger Event Duration 120 seconds 120 seconds 20 seconds 

Before or After Trigger After Before Before 

Trigger Event Point Start End End 

Time Window 40 seconds 40 seconds 15 seconds 

Min. Wash Duration 10 seconds 10 seconds 15 seconds 

Table 2 Rule Definitions for Examined Data 

4.3 Computed Statistics 

The data below in Figure 7 show the average required (“expected”), successful (“actual”), and 

additional hand washing events that were measured by the model at each precision level.  The 

full data may be found attached as Appendix A.  The data at one square foot of precision is taken 

as “reality.”  There are clear discrepancies as soon as precision drops to just four square feet. 
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Figure 7 Interpreted Hand Wash Events vs. Tracking Precision 

 

There are two trends clear in the graph above.  First, the loss of precision causes the model to 

believe that more events occurred that should generate a required hand washing than actually 

did.  Second, the loss of precision causes the model to believe that fewer hand washings 

occurred than really did, whether to comply with requirements or just additional washes.  The 

second trend is easier to explain.  The sinks given are only 2’x2’, and the model requires a 

location inside that region for the event to count as a hand washing.  At all precision levels larger 

than 2’x2’, each sink will be completely unreachable in at least some permutations of the grid 

cluster offsets.  Even for the 2’x2’ grid, data points representing valid hand-washing events are 

likely to have at least a few points hop off the sink long enough to end the wash early. 

 

The increase in expected washes is not as intuitive.  Again, this relates to the sensitivity of the 

model.  There is nothing in the model to stop a tracked user from travelling, apparently through 

walls, back and forth into adjacent rooms.  If an individual is supposed to be in examination 

room 3 (see Figure 2) for 10 minutes, for example, that individual would normally be responsible 

for two hand washes: once at the start and once at the end.  However, if that individual 

approaches the walls of the examination room just over every two minutes, the distortion in data 

at lower precisions could give the appearance of someone momentarily leaving, then re-entering, 

the room.  Every two minute or longer period in the exam room, capped by a departure into and 

return from another room, yields another two required hand washes.  The trend reverses at very 

low precision: if more “false exits” are being generated, then there will be fewer two minute 

stretches during which the individual appears to be in one room, than observed at higher 

precision.  As there is no such distortion in the 1’x1’ case, these phantom exits will never occur. 

 

The contrast between the measured compliance rates for the 1’x1’ case and for the other three 

cases (Figure 8, below) is explained by computing compliance from successful washes (fewer 

than expected were measured) divided by required washes (more than expected were measured). 
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Figure 8 Measured Compliance vs. Tracking Precision 

5.0 Implications and Future Work 
The results given in the previous section must be analyzed with respect to the limitations of the 

model used.  For example, it seems that it would not be difficult to adjust many of the model 

parameters (specifically, the details of the floor plan and the rules used to determine compliance) 

to get a fairly accurate result with precision down to four square feet (2’x2’), as the sinks in the 

example floor plan are taken to be in regions of 2’x2’.  Without having gone through the exercise 

of “tuning” the parameters of the model for each precision level, it is difficult to assess (indeed, 

it would still be difficult to quantify) the complexity involved in making these adjustments.  The 

point here is that no claim of “location data must have a precision of one square foot to measure 

this kind of behavior” can be made generally.  This only holds true for the limited, often 

simplistic model used. 

 

It is still useful to say, however, that there are obvious implications for model integrity with 

diminished precision.  Someone interested in building a real system to measure hand washing 

compliance using location data should be able to adapt the tool that was developed to determine 

their own precision requirements.  The results make it clear that not “just any data will do” – the 

raw data and the model interpreting it must be tightly connected.  It may also be possible to say 

that a single model cannot operate over a wide range of precision levels, at least not without 

significant adjustments for each level. 

 

Future work building on the project presented in this paper could take on the task of tuning the 

model definition and determining the most effective way of dealing with imprecise data.  Simple 

filters may remove some obviously erratic data, while far more advanced models could apply 

rules that make it impossible for someone to pass between walls without doors in short time 

periods (as appeared to be the case in the results presented).  A more realistic data set, perhaps 

from observing a hospital worker’s movements, might provide insight into more of the 
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intricacies of movement and the nature of hand washing in a real environment.  Additionally, a 

more intelligent algorithm might “learn” the parameters for modeling behavior through training 

data that provides event information (room entrances, exits, hand washing, etc.) in addition to the 

raw mobility data.  Finally, the results of this or a follow-on paper could be coupled with 

measurements of the precision of real systems to demonstrate what specific types of sensors 

could be reasonably deployed in the example (or a related) application. 

6.0 Conclusion 
Human behavioral models make many assumptions – this is the primary way that data is 

interpreted.  One of the assumptions implied in most models is that the data being interpreted is 

accurate and precise enough to make such assessments concerning the behavior of observed 

individuals.  Even the most accurate data still leaves out enormous amounts of information 

concerning the reality of the observed events.  The intricacies of human behavior cannot be fully 

expressed in a model as simple as the one observed here.  Therefore it is impractical to expect 

perfect results from any model, so there is an inherent threshold of accuracy below 100% that 

must be accepted if any models are employed.  The cost of diminished precision, therefore, may 

not be substantial if the accuracy is good enough to learn something useful from the tracking 

data.  This is especially true when financial considerations make a less precise system far more 

viable.  It is hoped that the tools and methods developed in this paper will be able to assist with 

such cost-benefit analyses in future systems developments. 
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Appendix A 

 

Scale Horiz. Offset Vert. Offset Opps Actual Additional Compliance 

 

1 0 0 54 32 51 59.26% 

 

2 0 0 89 19 41 21.35% 

 

2 0 1 82 20 49 24.39% 

 

2 1 0 132 21 42 15.91% 

 

2 1 1 130 22 50 16.92% 

 

3 0 0 136 0 4 0.00% 

 

3 0 1 148 0 0 0.00% 

 

3 0 2 92 0 2 0.00% 

 

3 1 0 91 11 30 12.09% 

 

3 1 1 90 37 65 41.11% 

 

3 1 2 102 26 50 25.49% 

 

3 2 0 139 10 31 7.19% 

 

3 2 1 157 39 63 24.84% 

 

3 2 2 102 26 50 25.49% 

 

5 0 0 70 3 22 4.29% 

 

5 0 1 98 0 0 0.00% 

 

5 0 2 98 0 0 0.00% 

 

5 0 3 114 0 0 0.00% 

 

5 0 4 120 13 51 10.83% 

 

5 1 0 70 3 22 4.29% 

 

5 1 1 98 0 0 0.00% 

 

5 1 2 98 0 4 0.00% 

 

5 1 3 114 0 4 0.00% 

 

5 1 4 120 13 51 10.83% 

 

5 2 0 78 2 21 2.56% 

 

5 2 1 113 0 0 0.00% 

 

5 2 2 113 0 21 0.00% 

 

5 2 3 92 0 21 0.00% 

 

5 2 4 92 17 82 18.48% 

 

5 3 0 78 2 21 2.56% 

 

5 3 1 113 0 0 0.00% 

 

5 3 2 113 0 17 0.00% 

 

5 3 3 92 0 17 0.00% 

 

5 3 4 92 17 82 18.48% 

 

5 4 0 54 0 0 0.00% 

 

5 4 1 57 0 0 0.00% 

 

5 4 2 57 0 17 0.00% 

 

5 4 3 72 0 17 0.00% 

 

5 4 4 72 0 0 0.00% 

 


