
1

Charles Wang
Duke University

Class of ‘05
ECE/CPS Pratt Fellow

Matching and Locating of Cloud to Ground
Lightning Discharges

Advisor: Prof. Steven Cummer

I: Introduction

When a lightning discharge occurs in the vicinity of Duke and Clemson
University, the discharge emits electromagnetic radiation in the ELF (3-3000Hz) and
VLF (3-30 kHz) bandwidth. The electromagnetic radiation will be recorded by ELF-VLF
magnetic induction field receivers both Duke and Clemson. For my research project, I
will describe a way to match identical lightning discharges in the Duke and Clemson
sensor data and then locate the origin of those lightning discharges. I will then verify the
matching and locating of the lightning discharges by estimating the error for my
calculations with data provided by the National Lightning Detection Network (NLDN).
The National Lightning Detection Network is composed of many sensors across the
United States. The Network only records strokes with peak current amplitudes of greater
than 5kA and the detection probability is between 80 and 90 percent. Therefore, many
lightning discharges will not be picked up by the NLDN sensors. Furthermore, the timing
accuracy provided by NLDN is only accurate to the millisecond. The sensor data is
accurate to the order of 10 microseconds. If we can locate the origin of the lightning
discharges with a small error based only on our sensor data, we will then be able to locate
many of those lightning discharges not detected by NLDN data.

2

II: Description of Data

a) The main focus of this research requires the analysis of sensor data at Duke and
Clemson. These sensors, controlled by LabVIEW virtual instrument (VI)
software, continuously record magnetic field strength at the sampling rate of
100kHz. Each of the sensors contains two channels: one channel that acquires
data in the magnetic North-South direction and one channel that acquires data in
the magnetic East-West direction. Furthermore, each of the sensors samples a
digital GPS signal to ensure the timing of the signal. During a lightning discharge,
the sensors will record a “spike” that is easily distinguishable from the ambient
noise. Figure 1a presents a sample of this type of data from the sensor at Duke.

b)

Figure 1a: Sample event extracted from our sensor data.

b) Data provided by the National Lightning Detection Network (NLDN) provides
validation methods and error estimates for our locating. This system is composed
of a network of sensors that provide time of arrival and direction finding
information for cloud-to-ground lightning discharges across the United States in a
text-based format. For each lightning stroke, data consists of date, time,
latitude/longitude measurements of the source, and peak current. Data for
different strokes are separated by a new line. Figure 1b displays a sample for this
type of data from March 2nd, 2004.

3

03/02/04 00:00:12.103 43.0982 -86.3097 -14.3
03/02/04 00:00:12.148 43.0977 -86.3084 -18.0
03/02/04 00:00:12.293 43.0976 -86.3092 -21.2
03/02/04 00:00:19.873 43.1134 -86.3013 -11.7

Figure 1b: Sample NLDN data taken from March 2nd, 2004. Each line consists of one
lightning event.

II: Description of Algorithm

The locating of lightning discharges takes place in two steps. We use the denoised
version of the sensor data to apply the locating algorithm since we want as little
interference as possible from noise. The noise from the sensor data occurs at 60Hz
harmonics. The denoise routine first identifies and masks out lightning discharges and
replaces it with averaged noise data. Then, the routine applies bandpass filters to the
resulting data at multiples of 60Hz until 2.4kHz and adds the filtered data together.
Finally, this filtered data is subtracted from the original data to achieve the denoised data.
We use this version of the data because we want the effects of noise in the sensor data to
be minimized. Note that this will add a preprocessing time to the time the algorithm takes
to run. Future considerations would be to minimize this preprocessing time to optimize
the algorithm. Note that all subsequent plots of data will be denoised data, not raw sensor
data. Finally, this algorithm will only deal with 10 second time windows since we need to
split the entire intersection of the two data files into manageable pieces.

1) We first need to acquire two data files, one recorded by the Duke sensor and
the other recorded by the Clemson sensor, which overlap in time. The
intersection of these two data files corresponds to the time we are interested
in. We then need to create a rule to identify lightning discharges in the data
files. Once we have identified the events, we then need to match together
corresponding lightning events in the two data files.

2) The second step is to position the matched lightning events recorded by the
sensors based on information acquired only through the sensor data. We
would like to find the latitude/longitude coordinates of the origin of the event.

III: Identification of events in the sensor data

Events in a data file are identified when the magnitude of the signal recorded by
one of the channels of the sensor exceeds a certain threshold. To make sure we only
identify lightning discharges, we make sure this threshold is above the level of the noise.
Since events have duration of about a hundred samples, after an event is identified, we

4

skip 1000 samples to make sure we don’t identify the same event twice. Refer to Figure 2
for a sample time window and all the events identified by that time window.

Figure 2: Sample time window of a data file. There are four events identified in this time window.
The dotted line corresponds to the threshold level. Currently, the threshold level is at .0753 nT.

IV: Matching of events in the sensor data

Once events are identified in both data files, we wish to match corresponding
events. To this extent, we note that the average time between events is many times larger
than the time of propagation from the origin to one of the sensors. Therefore, we can
match corresponding events based on their proximity in terms of time without worrying if
we are matching non-corresponding events. The current routine matches two events if
they differ by less than 120 samples, or 1.2 msec. Note that the difference in time
between the matches is the difference between the speed of light propagation time from
the origin of the event to Duke and speed of light propagation time from the origin to
Clemson. Figure 3 illustrates the matching of two events in the two different sensor
locations.

5

Figure 3: Sample event that was matched in the data file from the Duke sensor and the data
file from the Clemson sensor. The time difference of the event between the Duke data file
and the Clemson data file is less than 120 samples.

V: Finding the location of a lightning event

There is a constant time difference associated with each matched event. This time
difference is equal to the speed of light propagation time to Clemson subtracted from the
speed of light propagation time to Duke. We can find the difference of distances by
multiplying the time difference by the speed of light. To find where on that locus is the
actual point of origin of the event, we have to measure the angle of arrival of the event to
the Duke sensor. The angle of arrival is the same as the bearing angle from the sensor at
Duke to the origin of the event. To measure the angle of arrival, we first need to convert
the sensor data around the event to from magnetic North-South and magnetic East-West
to geographic North-South and geographic East-West. We then simply take the inverse
tangent of the quotient of the two channels to find the bearing angle. Figure 4 shows the
general picture of the locating algorithm.

Figure 4: The curve is the locus of all points such that the time difference between the Duke and
Clemson sensors is constant. The angle from the Duke sensor will help us calculate the which point
on that locus is the origin.

6

Note that the locus of a constant difference would define a hyperbola in a two-
dimensional plane. However, since we are dealing with the surface of a spherical object,
we would not obtain a true hyperbola.

The equation used to calculate the distance between two latitude/longitude points,
),(11  and),(22  , is:

)sinsin)cos(cos(coscos 211221
1   rd

where 197.6366r km is the radius of the Earth.
This equation is derived from converting spherical coordinates to Cartesian coordinates
and then taking the dot product to find the angle between the two points. The radius
multiplied by that angle in radians is the distance between the two points on a sphere.
The locus of points we are interested in is every latitude/longitude point),( such that:

)sinsin)cos(cos(coscos)sinsin)cos(cos(coscos 222
1

111
1    rrd

where)101.72,974.35(),(11  is the latitude/longitude coordinate of the Duke sensor

and)8229.82,7.34(),(22  is the latitude/longitude coordinate of the Clemson sensor
and d is the measured speed of light propagation difference. Note that this equation
usually will produce a locus with two branches. One of these branches corresponds to
points closer to Clemson than Duke. The other branch corresponds to points closer to
Duke than Clemson. The sign of the measured time difference will determine which
branch the point of origin is on. If the time difference is negative, this means that the
point of origin of the event is closer to Duke. If the time difference is positive, the point
of origin of the event is closer to Clemson.

We use the routine that calculates the bearing angle from the Duke sensor to the
origin of the event to find our measured angle of arrival. The equation of the bearing
angle between two points on a sphere would give us a second locus of points. This
equation is:

)
costan)cos(sin

)sin(
(tan

11

11








 

where)101.79,974.35(),(11  is the latitude/longitude coordinate of the Duke sensor
and  is the bearing angle obtained from the routine.
We are interested in all points),( that satisfy this equation.

7

The measured location of the origin is the intersection between these two loci of
points. Figure 5 shows a more exact, graphical picture of this locating algorithm.

Figure 5: This is a plot of the two loci that was generated with 13.1t msec
and  0525.72 . The intersection of these two loci is (31.7290,-109.0691), the calculated
latitude/longitude location of the point of origin.

VI: Technical Issues

Issue 1: Events in data files are identified when their magnitude exceeds a
certain threshold, not when the event starts.

When we identify events in the data files, the timing of the start of the
event is not identified. Instead, the timing of when the event exceeds a certain
threshold is identified. This could produce some minor problems since NLDN
data is based on the start time. However, the errors are lessened because we are
dealing with time differences, so some of the timing errors caused by the
difference between the start time of the event and the threshold time of the vent
are subtracted out. But to try to minimize, we have developed a MATLAB script
that attempts to figures out the first section of the event before the threshold
where the signal waveform starts to “smooth over.” Figure 6 shows the input and
output of this MATLAB script.

8

Figure 6: The MATLAB routine tries to find the Start time of the event from the Triggered
time and the signal waveform. From the plot, the Start time is approximately the correct
part of the waveform where the smooth part of the signal ends.

The MATLAB code for this routine is reproduced below:
function testpoint = getStart(data)

%data has to be 6000 samples long and the triggered time is at sample 2000.

threshold = .1; %threshold slope

start = 1960; %start with a time 40 samples before the triggered time
triggeredTime = 2000;

a=start;
b=triggeredTime;

testpoint = floor((a+b)/2); %first test the midway point

for i=1:8 %test a maximum of 8 points.
 if(abs((data(testpoint-1)-data(testpoint+1))/2) > threshold)
 %if the midway point has a slope greater than the threshold slope,
 %the start time is before the midway point
 b=testpoint;
 testpoint = floor((a+b)/2);
 else
 %else the start time is after the midway point.
 a=testpoint;
 testpoint = floor((a+b)/2);
 end

9

Issue 2: There exists a periodic unwanted signal in the Clemson data files.

There exists a periodic signal in the Clemson data files by visual examination.
Since this periodic signal cannot be an event, the threshold level for Clemson data
files will not be consistent with the threshold level of the Duke data files. Figure 7
displays an example of this periodic signal.

Figure 7: Segment of a Clemson data file displaying the periodic unwanted signal.

In order to have consistent threshold times in both Duke and Clemson data
files, we need to somehow remove this unwanted periodic signal from the
Clemson data. In order to achieve this, we need to obtain the time when the period
starts in our data file segment and set that part of the signal equal to zero. By
examination, the period of the unwanted signal is 833 samples. To find the
unwanted signal of the first period, it is sufficient to take the cross-correlation
between unwanted signal and the 999 samples of the data. The maximum of this
cross correlation corresponds to the time when the unwanted signal in the first
period occurs. We can then mask every period since we know the length of each
period. For better performance, the MATLAB routine identifies the unwanted
signal every half of a second through the cross-correlation method. This masking
method fairly effective since it takes out most of the unwanted signals in the
Clemson data file. We can then utilize the same threshold for event identification
in both the Duke and Clemson data files. Figure 8 displays a 10 second window of
the Clemson data file before masking and after masking.

10

Figure 8: Before masking and after masking plots. As is evident, most of the unwanted signal
is removed after masking.

Below is the code that masks a ten second window in the Clemson data file (a 2
by 1000000 matrix named data2)

.
for k=1:2 %mask both channels

 mask2 = ones(1,1000000); %initialize the mask vector
 for j=1:20 %mask 0.5 second at a
 %time (10 seconds total)
 start = 50000*(j-1)+1;
 stop = start+999; %check first 999 samples

 corr = xcorr(data2(k,start:stop), unwanted);
 [m ind] = max(abs(corr)); %max of xcorr is the index of the first
 %signal

 i=start+ind-1000+28;

 while(i+30<50000*j)
 mask2(i-30:i+30) = 0; %fill up mask vector with zeros when
 %there is an unwanted signal.
 %unwanted signal is 60 samples long.
 i=i+833; %unwanted signal is spaced 833 samples apart (8.33ms)
 end
 end
 datamask2(k,:) = mask2.*data2(k,:); %masked data is masked vector
 %multiplied element-wise by the data

end

11

VII: Analysis of Data

We need analyze our data to make sure that we are performing the matching and
locating correctly. To do this, we use the NLDN data to check our results. This occurs in
two steps.

1) To check whether we are matching events correctly, we try to match events in
our data files with events in our NLDN data using the same matching
algorithm as between the two sensors. We can then calculate the actual time
differences for those events and compare them to the measured time
differences. If a high percentage of matches exist in the NLDN data and the
actual and measured time differences correspond, we know we are matching
events correctly.

2) To check whether we are locating events correctly, we try to locate events that
are exhibited in both the sensor data and the NLDN data. Therefore, we can
calculate the average distance between the calculated location and the actual
location of those events.

VIII: Results

Below is a sample of the matches obtained when we attempt to match the sensor
data with the NLDN data:

Duke time Clemson time Δt Measured (ms) Δt Expected (ms) Δ(Δt) (ms)
268:19:59:52.8707 268:19:59:52.8696 1.04 1.0569 0.016879
268:19:59:52.9002 268:19:59:52.8991 1.07 1.0568 -0.013158
268:19:59:52.9901 268:19:59:52.9889 1.2 1.1982 -0.0018403
268:19:59:53.0166 268:19:59:53.0154 1.2 1.199 -0.0009723
268:19:59:53.7155 268:19:59:53.7144 1.15 1.1535 0.0035465
268:19:59:53.8016 268:19:59:53.8004 1.14 1.1536 0.013635
268:19:59:53.8521 268:19:59:53.851 1.15 1.1536 0.0035688

The measured time difference is obtained by subtracting the Duke time from the Clemson
time. The expected time difference is obtained by subtracting the time of propagation
from the source of the event to Duke from the time of propagation from the source to
Clemson. This is done using NLDN data. The last column lists the measured time
difference subtracted from the expected time difference. Based on the results, the
matching algorithm is accurate when we try to compare the matches to NLDN data. In
fact, the error is never more than 1 or 2 samples (10-20 usec).

The locating algorithm needs to be optimized before being tested. Currently, locating one
event takes about three minutes of time. Since there can be over 100 matches for a ten
second window, this is prohibitively long. Even if we restrict ourselves to those matches

12

that also show up in NLDN data, the locating would still take over thirty minutes. This
substantial amount of time is due to the complexity of single-linkage clustering, which
we need to perform in order to find the intersection of the two contours described in
Figure 5. The complexity is on the order of the product of the elements contained in the
two contours, which is well over one million. Also, note that the locating is very sensitive
to changes in bearing angle due to the sharpness of the t contour. If the calculated
bearing angle is off by even a few degrees, the locating would perform poorly. However,
for the sample event in Figure 5, the actual latitude/longitude coordinates are
(31.6791,-108.5922), which is only 49.8 km. off from the calculated latitude/longitude
coordinates of (31.7290,-109.0691). This is a low error since the event is 2,753km away
from Duke.

References:

Heavner. M. October 10th. 2000. NLDN Description
http://nis-www.lanl.gov/nis-projects/edot/ildc2000/node5.html. Accessed April 26th,
2005.

Acknowledgements:

-Prof. Steven Cummer

-Zhenggang Cheng, PhD Student

-Dean Martha Absher

