
 1

Hierarchical Modeling and Analysis of
Process Variations: the First Step

Towards Robust Deep Sub-Micron
Devices, DC Approach

Pratt School Of Engineering
Duke University

Student: Devaka Viraj Yasaratne
Majors: Electrical & Computer Engineering,

Computer Science
Advisor: Prof. Sule Ozev (Assistant Professor of

Electrical & Computer Engineering)

 2

Abstract
As feature sizes continue to shrink due to semiconductor manufacturers
pushing the limits of process technology, the role of process variations gains
more and more importance. As these devices are scaled further down,
precise control over process parameters becomes difficult, and knowledge of
the variances of these parameters at each hierarchical layer is vital for a
successful design process. In my research I collected data to support a
hierarchical variance analysis methodology for analog circuits. I performed
two different types of analysis in order to determine that this methodology
was indeed accurate and computationally efficient, when compared to prior
approaches. The two types of analyses were, a Monte Carlo simulation that
simulated 50 000 instances of an input stage to an amplifier circuit, and a
Sensitivity analyses of that same circuit using first order Taylor series
expansions. I then added an output stage in series with the previous circuit,
and performed both types of analysis again, to ensure that this approach was
effective for larger circuits with more transistors. Experimental results
indicate that the proposed first order Sensitivity analysis method is accurate
and computationally efficient in circuits that don’t have large non-linear
dependencies. It is an improvement when compared to previous
methodologies when compared to previous methodologies. The research
team has drafted a paper titled “Hierarchical variance analysis for analog
circuits based on graph modeling & correlation loop tracing” which has been
submitted for a blind review.

 3

Table Of Contents
INTRODUCTION .. 4
HYBRID HIERARCHICAL TOLERANCE ANALYSIS METHOD... 5
MODELING THE CIRCUIT.. 6
SIMULATION.. 8

ACCOUNTING FOR MISMATCH... 8
CALCULATING SENSITIVITIES... 8
MONTE CARLO SIMULATION .. 9

CODING INFRASTRUCTURE ... 9
CLASSES USED FOR SENSITIVITY .. 10
CLASSES USED FOR MONTE CARLO .. 11

EXPERIMENTAL RESULTS .. 11
CONCLUSIONS... 12
FUTURE WORK ... 13
ACKNOWLEDGEMENTS ... 13

 4

Introduction

As devices have become more and more widely used to perform a multitude of
everyday tasks, the need for them to be smaller, faster and more reliable has grown too.
In response feature sizes of semi conductor components have shrunk in such a way that
device parameters get so small that even the smallest process variations of a few atoms,
lead to high variability in the performance. The SIA roadmap for semiconductors! [5]
Indicates an expected node size of 65nm (physical gate length = 25nm) in 2007. As these
feature sizes shrink, the impact of process variations on the circuit is amplified. As an
example, gate oxide thickness has reduced from 140Å for 0.5µm technology to 25Å for
90nm technology. Since the average bond length of SiO2 is 1Å, the minimum absolute
deviation in gate oxide thickness cannot be less than 1.61Å. Thus, the minimum relative
deviation in oxide thickness has increased from 1.1% for 0.5µm technology to 6.4% for
90nm technology (cite fangs paper!).

These process variations propagate to from the process level to the performance
level, leading to variability in the output. If the effect of the said variations could be
analyzed and accounted for it would be very useful to design, automation, and test
development efforts. During design, analysis of the effects could lead to both better
estimations of the circuits yield, and also could be helpful in quickly identifying parts of
the circuit where the variation of a process parameter has a large impact on the output.
The designer could then quickly change his design before beginning the fabrication
process. This type of analysis also leads to the ability to quickly generate tests, which will
identify both catastrophic and soft faults, thereby drastically reducing time to production.
 It is clear that the need to integrate process variations into the design process is
gaining importance and examining a few techniques that have been considered before
must be examined. Previously methods for estimating tolerance windows have led to
either an under estimation by using arbitrary margins for process variations [fang 5!] or
an over estimation by only taking corner cases into account [fang 6!]. All techniques to
evaluate the statistical variations in component values are known as methods to solve the
statistical tolerance analysis problem, and an abundance of such techniques exist. They
fall into three broad categories, which are derivation-based approaches, sample-and-
simulate approaches, and worst-case min-max approaches. Out of these methods the most
computationally accurate is the derivation method, although it deriving exact functional
relations between process and performance parameters can be complex and time
consuming. Worst-case min-max analysis is the opposite of the derivation method in the
sense that it provides an extremely inaccurate result at a low computational cost. Sample-
and simulate based approaches provide a good understanding of tolerance behavior, albeit
at a high computational cost [site fang!].
 Due to the several reasons that will be discussed in this section, a new method of
solving the tolerance analysis problem is needed. Firstly, while devices have been
shrinking systems have also become more complicated. Due to this complexity more and
more transistors are being placed on a single die, and this has pretty much eliminated any
hope of using a purely derivation based method of tolerance analysis. As designs get
more complex, and more dependant on process variations, min-max analysis could start
to produce results with a percentage variations of hundreds of percentages. Purely sample

 5

and simulate methods require a large number of simulations as circuits become more
complex, and this leads to a large increase in the cost of those methods. Also, another
reason to find a new approach is the need to reduce computation time in order to be able
to push designs to market faster. Since the current approaches are either to inaccurate or
costly a new method is needed. A new technique should exploit the hierarchical construct
of circuits in order to promote design reuse. The reason for this is that a slight change
modification in one part of the circuit will not require a re-computation of the overall
tolerance information, and thereby greatly reduce evaluation time.

In this paper a proposed [fang’s paper!] novel hybrid hierarchical tolerance
technique that exploits the advantages of both the derivation-based analysis method and
approximate modeling in an attempt to enable accurate and efficient computation of
parameter variations. As the number of hierarchical layers increases the accuracy of the
computation does not start to decrease dramatically, and the computation time is
dramatically less than the ‘Monte Carlo’ sample and simulate technique that it is
compared to. The goal of this technique is to derive the tolerance response in a
hierarchical manner.

Hybrid Hierarchical Tolerance Analysis Method

As discussed before the increasing complexity of electronic circuits has led to the
requirement of a computationally efficient, hierarchical approach to tolerance analysis.
The proposed approach will use simulation based modeling at the transistor level and rely
on analytical derivation for modeling at higher levels of hierarchy.

In analog circuits, a small number of transistors constitute building blocks (such
as current mirrors, diff-amp pairs, etc.), several building blocks constitute modules (such
as an OPAMP), and modules are connected in a network to building the circuits (such as
a filter or an ADC). The relations among parameters of the circuit at various levels can be
defined either through approximate behavioral models, or through simulator-based
models, such as the sensitivity analysis. Thus, there is inherently a hierarchical construct
followed during the design process. This hierarchy can be depicted as follows:

P
i1

= f
i1

(P
10 ,P20 ,...,PNP0

0)

P
i2

= f
i2

(P
11 ,P21 ,...,PNP1

1)

...
P
ir

= f
ir

(P
1i−1 ,P2 i−1 ,...,PNPi−1

i−1)

Where Pir denotes the ith parameter at the hierarchy Level-r, f ir denotes its

functional relation in terms of parameters one level down in the hierarchy and NPr
denotes the number of parameters at the hierarchy Level-(r). [Date Paper!].In [Fang’s

 6

Thesis!] the following expression is derived to compute the variance of each parameter at
each level of the hierarchy of the circuit.

σP
ji

2 = (SP
k(i−1)

P
ji

k
∑)2σP

k(i−1)

2 +
i(0)

r(0)

∑ ...
i(1) , j (1)

r(1)

∑
i(n−2) , j (n−2)

r(n−2)

∑ ⋅ (SP
i(n−1)

P
i(n) ...SP

i(0)

P
i(1))(SP

j(n−1)

P
i(n) ...SP

i(0)

P
j(1))σP

i(0)

2

i(n−1) ≠ j (n−1)

r(n−1)

∑

Equation 1

Where,

SP
j (k−1)

P
jk =

∂P
j (k)

∂P
j (k−1)

|(µP
1(k−1) ,µP

1(k−1) ,...,µP
1(k−1))

Equation 2

Represents the first order sensitivity of a level-k parameter to a level-k-1 parameter
P
i (k−1) . In this report I concentrate on level 0,1 and 2 parameters, and have picked a circuit

that has only one level 1 DC parameter that affects the DC parameters of level 2, and
therefore Equation 1 simplifies to only the first term.

Modeling the Circuit

The circuit used was the 7-transistor operational amplifier circuit depicted in Figure 1.
All transistors have a length of 1.8 ×10−7m in order to allow a even a change of a few
angstroms to significantly change the input parameter values.

Figure 1

 7

This circuit can be broken into two major blocks, which are connected in a hierarchical
manner. The first block would be the first 5 transistors that make up the input stage. This
stage, which is depicted in figure 2, is connected to the second stage by the voltage at the
node that connects transistors M4 and M2 together. This voltage will be known as Vout .
The second stage, or top level of this basic hierarchy is the output stage depicted in figure
3. The variances of the output parameters of the second stage (i.e. Id 6,Id 7,Vo...) are
dependent not only on variations of the process parameters of that stage (i.e.
W6,W7,Tox6,L7 ...), but also on the variance of Vout .

The hierarchy can be displayed more clearly by utilizing a graphical approach as shown
in figure 4.

Vout Vin

VDD

VBIAS

Vss

Figure 2 Figure 3

Figure 4

 8

The circuit described above was modeled using a level 49 HSpice circuit file. Nominal
values for the input parameters were selected from a circuit that was assumed to be used
in industry today. All Sensitivity and Monte Carlo simulations were performed using this
file as the basic input method. The HSpice input file can be found in the Appendix
section of this report.

Simulation

As was discussed previously a monte carlo simulation was performed to find out what the
actual variances of the output parameters were, and then these values were compared to
the sensitivity based tolerance analysis described by Equation 1.

Accounting for mismatch

The transistors M1, M2 and M3, M4 have to be matched in order for the circuit to
function correctly, keeping all transistors in the saturated region. As these transistors are
matched, they will be laid out close to each other on the die, and due to this process
variations of corresponding input parameters (i.e. W1,W2) would be similar. Therefore,
in order to accurately simulate process variations in the nominal circuit it was necessary
to introduce a small mismatch percentage between corresponding input parameters in
matched transistors, while at the same time varying the 2 parameters by a greater
percentage from its nominal value. With this technique the matched parameters (i.e. W1,
W2) become a single parameter (i.e. W12), and the mismatch becomes another
independent parameter (i.e. mmW12).

Calculating Sensitivities

The method proposed in [Fangs thesis!] to calculate the variance of output
parameters is implemented mathematically in Equation 1. In order to perform this
computation it is necessary to find out the sensitivity of each upper level parameter to
each lower level parameter. The basic calculation of sensitivity is shown in Equation 2. In
order to account for the mismatch between matched parameters an additional term needs
to be added to Equation 1, and this change is depicted below:

σP
ji

2 = (SP
k(i−1)

P
ji

k
∑)2σP

k(i−1)

2 + (SP
m(i−1)

P
ji

m
∑)2σP

m(i−1)

2

Equation 3
Where, Pm is the mismatch of 2 parameters, and m is the number of mismatched

parameters. A sensitivity simulation was first performed on the first/input stage circuit
shown in figure 2. Initially sensitivities were calculated for every single input parameter
of the five transistors, by perturbing 1 parameter by 1% of its nominal value and

 9

measuring the effect of that change in terms of the percentage change in the following
output parameters for each transistor: ID, GM, GM, GDS, CGS, VDS, CGD, CDTOT.
After performing this initial analysis it was clear that the output parameters were much
more sensitive to certain input parameters. In order to further improve computation time,
a list of input parameters that were significantly sensitive to the output parameters was
selected, and all further simulations were run on these. These input parameters were W,
L, CGSO, CGDO, TOX, VTH0, K1, K2, PDIBLC2, U0, XJ, NFACTOR, PCLM, VOFF,
PB, and CJ for each transistor. In order to account for matching a second sensitivity
simulation had to be performed on the 5 transistor input stage. In this second simulation
all parameters were kept at the nominal value including one of the matched pair (i.e. W1
in W12). The other parameter (i.e. W2) was varied by the mismatch percentage of 0.5%
and the sensitivity to each output parameter was found. The result of this simulation was
then normalized so that it reflected sensitivity to a 1% change in the input mismatches.

After performing 2 sensitivity calculations – to sensitivities to the variation from
the mean, and the mismatch variation - on the input stage, a third simulation was run on
the output stage. This circuit is depicted in figure 3, and the same pre-selected list of
input parameters was once again varied by 1% to find the sensitivities. The output
variable Vout from the input stage was considered to be an input to this circuit, and was
modeled as a voltage source. This is how the hierarchical construct of circuits is exploited
in this method of analysis.

Monte Carlo Simulation

A Monte Carlo simulation is a brute force method of finding out how a circuit
would realistically be subject to process variations. This simulation was performed by
taking the HSpice input file of the circuit in Figure 1 to be the nominal circuit and then
normally distributing the list of input parameters specified in the previous section by a
3σ value of 2%, and also normally distributing the mismatch by a 3σ value of 0.2%.
20000 such random circuits were created using the distributions, and they were simulated
in HSpice to find the outputs. The results were then analyzed to find the variance of the
output parameters that were listed in the previous section.

Coding Infrastructure

In order to perform the simulations described above it was necessary to come up
with a coding infrastructure to modify circuit files accordingly, collect data, and automate
the process so that these tasks didn’t have to be repeated manually for every single
HSpice simulation. Since the nominal circuit had to be modified multiple times in both
methods of simulation, and a new circuit file need to be generated for each run it was
decided to design a new input format that could describe either of the 2 required circuits
in about 20 lines. This format is easily converted to files in HSpice format and vice versa.
The use of this input format helped to simplify the programming effort, and made it easy
to parse through any of the three input circuits in figures 1,2, and 3 with minimal changes
to the code.

 10

All the programming was done using Java 1.4.2 developed by Sun Microsystems,
and developed on the Eclipse 3.0.0 design environment. The Java programs were run in a
Unix environment, and used to perform the necessary modifications, call HSpice, and
then collect the results. Java was chosen in order to provide modularity to separate the
different simulation steps into classes and also to be able to reduce the code redundancy
for the 2 different types of simulations. The classes used and their purpose are described
in the following sections:

Classes used for Sensitivity

HSpiceFileGrabber.java – Reads an HSpice input file and translates it into the new easy
to parse format. It also stores a ‘y’ or ‘n’ next to each parameter value indicating that it
may be varied or not. The list of parameters that can be varied must be specified in this
file.

GrabSpice.java - Grabs all the output values of a single simulation and writes it to a
specified output file.

CircuitBuilder.java – The percentage that the input parameters must be varied by is the
input to this file. A modification must also be made depending on whether the simulation
runs are for standard process variation sensitivity calculations or the sensitivity to
mismatch calculations. This class goes through the input file created by
HspiceFileGrabber.java and builds a new circuit (with one input parameter varied) for
each variable input parameter.

HSPiceFileCreatorSens.java - Uses information in myInputFile, and PARAMFILE
(which contains the names of all the input parameters) to simulate circuit files created by
CircuitBuilder.java. After each HSpice simulation GrabSpice.java is called to grab all the
outputs of that run and write it to "o1outputs.temp". After all the simulation runs are
complete calcSensitivity.java is called to calculate the sensitivity to each input parameter
to all output parameters.

CalcSensitivity.java – This class goes through all the data collected by
HspiceFileCreatorSens.java and performs the sensitivity calculation. All sensitivity data
is then written to stvt.txt.

Sp
o =

ONew −OInitial
OInitial

 ⋅

100%
∆P

Equation 4

Where SP
O is the sensitivity of output parameter O to a change in input parameter P. This

is essentially the same as Equation 3.

 11

calcSensO1.java - calls HspiceFileGrabber.java, CircuitBuilder.java to build all the
specific circuits and HspiceFileCreator.java to perform the sensitivity simulations.

Classes used for Monte Carlo

HspiceFileGrabber.java and GrabSpice.java perform the same tasks and are shared by
both programs.

MonteCarlo.java - Calls HspiceFileGrabber on the input file, then calls Pickvals.java to
generate a specified number of random circuits, and finally calls HSpiceCreator.java to
simulate the circuits.

PickVals.java – This file takes in the Number of random circuits to be simulated, and the
3Sigma points of the normal distributions for mismatch and standard variation. It goes
through each input parameter in file data.txt and creates NUMCIRCUITS random circuits
by varying each of those parameters within the bounds specified by the normal
distribution.

HSPiceFileCreator.java - Uses information in myInputFile, and PARAMFILE (which
contains the names of all the input parameters) to build and simulate circuit files. After
each simulation GrabSpice is called to grab all the outputs of that run and write it to
"randout.out". After all the simulation runs are complete GrabParam is called to collect
output values of each parameter.

GrabParam.java - grabs all the values of a specified output parameter from a file such as
randout.out, which is generated by multiple HSpice simulations.

Experimental Results

The data collected from the 3 sensitivity runs – Sensitivity to standard variation,
and mismatch for the input stage, and sensitivity to variations in the output stage – can be
found in the Appendix section of this report. After analyzing the data and applying
Equation 3 to the VOut (as defined in previous sections this is the output voltage of the
input stage) the percentage of the standard deviation from the mean value was found.
.Compared to the Monte Carlo Approach the sensitivity method produced a 20% error as
can be seen in table 1.

Type of analysis Standard Deviation of

Parameter as a Percentage
of the Nominal Value

Error %

Monte Carlo 20K runs 1.585625155
Sensitivity Method 1.916650749 20.87666135

 12

Table 1: Stdev of output parameter VOut in the input stage

 In order to move to the next block in the hierarchy it was necessary to use the
connecting parameter VOut as an input to the circuit in figure 3. The sensitivity of Vo and
id6 of the second stage to a 1% change in VOut was then manually calculated to be 24.144
and 5.936 respectively. Taking the standard deviation of this parameter to be 1.9167% as
was calculated above, and the standard deviation of all the other parameters to be
2/3%(3Sigma point of Monte Carlo run). The following results were obtained:

Type of analysis Standard Deviation of

Parameter as a Percentage
of the Nominal Value

Error %

Monte Carlo 20K on VO 31.6413
Sensitivity Method on VO 51.055 61.358
Monte Carlo 20K on ID6 9.0353
Sensitivity Method on ID6 12.7265 40.8533

Table 2: Stdev of output parameters in the output stage
Since the error seems to have double when propagating up the hierarchy, an extra test
was performed to see what happens if Monte Carlo was performed on the 2 blocks
separately and then combined using the sensitivity tolerance analysis technique. In order
to do this the only change that had to be made was to use 1.5856% as the standard
deviation for VOut when it is used as an input parameter to the second stage. The results
obtained from this variation are in table 3.

Type of analysis Standard Deviation of

Parameter as a Percentage
of the Nominal Value

Error %

Monte Carlo 20K on VO 31.6413
Sensitivity Method on VO 44.3523 40.174
Monte Carlo 20K on ID6 9.0353
Sensitivity Method on ID6 10.9769 21.489

Table 3: Stdev of output parameters in the 2nd stage(modified)

What is important to note is that while the Monte Carlo simulation needed 20000 circuit
simulations and approximately 13 hours of runtime, the 3 sensitivity calculations
included simulation of less than 150 circuit simulations and could be performed in under
30 minutes even while making the necessary changes in the code to find sensitivity to
either the standard variation, or mismatch.

Conclusions

Two main conclusions can be reached from the research that has been performed.
Firstly, the technique proposed to calculate the variance of an output parameter using the
sensitivities of this parameter to a list of input parameters as described in Equation 1,
seems to under estimate the actual variation by a large percentage (20%). One could

 13

argue that since this method is still useful as it is relatively accurate in comparison with
something like a min-max analysis, and can also be performed so quickly it still has
practical applications such as rapid test development, and easily identifying problem
areas in circuits without delay. However, the fact that the error seems to almost double as
one moves from one level of the hierarchy to the next means that this approach gets more
inaccurate for circuits with large non linear dependencies, such as the dependency of the
output parameters of the second stage on VOut of the input stage. More research needs to
be done to find methods of adding additional correction terms to the equation in order to
make it work better with highly non-linear circuits.

Table 3 shows results acquired when the Monte Carlo analysis is done separately
for each block (This is feasible as the Monte Carlo approach for small blocks is less
costly), and then calculated sensitivities are used to find the total variance of performance
parameters. This method is more costly but almost twice as accurate as the purely
sensitivity based technique.

Future Work

Previously, the 2nd term of Equation 1 was ignored, as there were no correlations
between lower level parameters. The next step would be to design a circuit with 4 or 5
level parameter hierarchies, and perform this analysis on that circuit. Correlation loops as
described in [cite our earlier paper] will come into effect in such a circuit, and an
algorithm that identifies such loops needs to be developed.

More analysis of the current technique needs to be done in order to make this
proposed approach more accurate.

Acknowledgements

I would like to sincerely thank Prof. Sule Ozev for her guidance, enthusiasm, and
patience. I am also extremely grateful to Mr. Fang Liu for introducing me to his work,
and Jacob Flomenberg for his assistance in developing the coding infrastructure.

Name: Devaka Viraj Yasaratne
Majors: Electrical and Computer Engineering/Computer Science Double
Major
Project: Hierarchical Modeling and Analysis of Process Variations: The
First Step Towards Robust Deep Sub-Micron Devices. Nonlinear DC
Approach
Advisor: Sule Ozev, Assistant Professor of Electrical and Computer
Engineering

