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Abstract 
As feature sizes continue to shrink due to semiconductor manufacturers 
pushing the limits of process technology, the role of process variations gains 
more and more importance.  As these devices are scaled further down, 
precise control over process parameters becomes difficult, and knowledge of 
the variances of these parameters at each hierarchical layer is vital for a 
successful design process. In my research I collected data to support a 
hierarchical variance analysis methodology for analog circuits. I performed 
two different types of analysis in order to determine that this methodology 
was indeed accurate and computationally efficient, when compared to prior 
approaches. The two types of analyses were, a Monte Carlo simulation that 
simulated 50 000 instances of an input stage to an amplifier circuit, and a 
Sensitivity analyses of that same circuit using first order Taylor series 
expansions. I then added an output stage in series with the previous circuit, 
and performed both types of analysis again, to ensure that this approach was 
effective for larger circuits with more transistors.  Experimental results 
indicate that the proposed first order Sensitivity analysis method is accurate 
and computationally efficient in circuits that don’t have large non-linear 
dependencies. It is an improvement when compared to previous 
methodologies when compared to previous methodologies. The research 
team has drafted a paper titled “Hierarchical variance analysis for analog 
circuits based on graph modeling & correlation loop tracing” which has been 
submitted for a blind review.  
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Introduction 
 

As devices have become more and more widely used to perform a multitude of 
everyday tasks, the need for them to be smaller, faster and more reliable has grown too. 
In response feature sizes of semi conductor components have shrunk in such a way that 
device parameters get so small that even the smallest process variations of a few atoms, 
lead to high variability in the performance. The SIA roadmap for semiconductors! [5] 
Indicates an expected node size of 65nm (physical gate length = 25nm) in 2007. As these 
feature sizes shrink, the impact of process variations on the circuit is amplified. As an 
example, gate oxide thickness has reduced from 140Å for 0.5µm technology to 25Å for 
90nm technology. Since the average bond length of SiO2 is 1Å, the minimum absolute 
deviation in gate oxide thickness cannot be less than 1.61Å. Thus, the minimum relative 
deviation in oxide thickness has increased from 1.1% for 0.5µm technology to 6.4% for 
90nm technology (cite fangs paper!). 

These process variations propagate to from the process level to the performance 
level, leading to variability in the output. If the effect of the said variations could be 
analyzed and accounted for it would be very useful to design, automation, and test 
development efforts. During design, analysis of the effects could lead to both better 
estimations of the circuits yield, and also could be helpful in quickly identifying parts of 
the circuit where the variation of a process parameter has a large impact on the output. 
The designer could then quickly change his design before beginning the fabrication 
process. This type of analysis also leads to the ability to quickly generate tests, which will 
identify both catastrophic and soft faults, thereby drastically reducing time to production.  
 It is clear that the need to integrate process variations into the design process is 
gaining importance and examining a few techniques that have been considered before 
must be examined. Previously methods for estimating tolerance windows have led to 
either an under estimation by using arbitrary margins for process variations [fang 5!] or 
an over estimation by only taking corner cases into account [fang 6!]. All techniques to 
evaluate the statistical variations in component values are known as methods to solve the 
statistical tolerance analysis problem, and an abundance of such techniques exist. They 
fall into three broad categories, which are derivation-based approaches, sample-and-
simulate approaches, and worst-case min-max approaches. Out of these methods the most 
computationally accurate is the derivation method, although it deriving exact functional 
relations between process and performance parameters can be complex and time 
consuming. Worst-case min-max analysis is the opposite of the derivation method in the 
sense that it provides an extremely inaccurate result at a low computational cost. Sample-
and simulate based approaches provide a good understanding of tolerance behavior, albeit 
at a high computational cost [site fang!]. 
 Due to the several reasons that will be discussed in this section, a new method of 
solving the tolerance analysis problem is needed. Firstly, while devices have been 
shrinking systems have also become more complicated. Due to this complexity more and 
more transistors are being placed on a single die, and this has pretty much eliminated any 
hope of using a purely derivation based method of tolerance analysis. As designs get 
more complex, and more dependant on process variations, min-max analysis could start 
to produce results with a percentage variations of hundreds of percentages. Purely sample 
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and simulate methods require a large number of simulations as circuits become more 
complex, and this leads to a large increase in the cost of those methods. Also, another 
reason to find a new approach is the need to reduce computation time in order to be able 
to push designs to market faster. Since the current approaches are either to inaccurate or 
costly a new method is needed. A new technique should exploit the hierarchical construct 
of circuits in order to promote design reuse. The reason for this is that a slight change 
modification in one part of the circuit will not require a re-computation of the overall 
tolerance information, and thereby greatly reduce evaluation time.  

In this paper a proposed [fang’s paper!] novel hybrid hierarchical tolerance 
technique that exploits the advantages of both the derivation-based analysis method and 
approximate modeling in an attempt to enable accurate and efficient computation of 
parameter variations. As the number of hierarchical layers increases the accuracy of the 
computation does not start to decrease dramatically, and the computation time is 
dramatically less than the ‘Monte Carlo’ sample and simulate technique that it is 
compared to. The goal of this technique is to derive the tolerance response in a 
hierarchical manner. 
 

Hybrid Hierarchical Tolerance Analysis Method 
 

As discussed before the increasing complexity of electronic circuits has led to the 
requirement of a computationally efficient, hierarchical approach to tolerance analysis. 
The proposed approach will use simulation based modeling at the transistor level and rely 
on analytical derivation for modeling at higher levels of hierarchy. 

In analog circuits, a small number of transistors constitute building blocks (such 
as current mirrors, diff-amp pairs, etc.), several building blocks constitute modules (such 
as an OPAMP), and modules are connected in a network to building the circuits (such as 
a filter or an ADC). The relations among parameters of the circuit at various levels can be 
defined either through approximate behavioral models, or through simulator-based 
models, such as the sensitivity analysis. Thus, there is inherently a hierarchical construct 
followed during the design process. This hierarchy can be depicted as follows: 
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Where Pir  denotes the ith parameter at the hierarchy Level-r, f ir  denotes its 

functional relation in terms of parameters one level down in the hierarchy and NPr  
denotes the number of parameters at the hierarchy Level-(r). [Date Paper!].In [Fang’s 
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Thesis!] the following expression is derived to compute the variance of each parameter at 
each level of the hierarchy of the circuit. 
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Represents the first order sensitivity of a level-k parameter to a level-k-1 parameter 
P
i ( k−1) . In this report I concentrate on level 0,1 and 2 parameters, and have picked a circuit 

that has only one level 1 DC parameter that affects the DC parameters of level 2, and 
therefore Equation 1 simplifies to only the first term. 
 

Modeling the Circuit 
 
The circuit used was the 7-transistor operational amplifier circuit depicted in Figure 1. 
All transistors have a length of 1.8 ×10−7m  in order to allow a even a change of a few 
angstroms to significantly change the input parameter values. 

 
Figure 1 
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This circuit can be broken into two major blocks, which are connected in a hierarchical 
manner. The first block would be the first 5 transistors that make up the input stage. This 
stage, which is depicted in figure 2, is connected to the second stage by the voltage at the 
node that connects transistors M4 and M2 together. This voltage will be known as Vout . 
The second stage, or top level of this basic hierarchy is the output stage depicted in figure 
3. The variances of the output parameters of the second stage (i.e. Id 6,Id 7,Vo...) are 
dependent not only on variations of the process parameters of that stage (i.e. 
W6,W7,Tox6,L7 ...), but also on the variance of Vout . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The hierarchy can be displayed more clearly by utilizing a graphical approach as shown 
in figure 4.  
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Figure 4 
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The circuit described above was modeled using a level 49 HSpice circuit file. Nominal 
values for the input parameters were selected from a circuit that was assumed to be used 
in industry today. All Sensitivity and Monte Carlo simulations were performed using this 
file as the basic input method. The HSpice input file can be found in the Appendix 
section of this report. 

Simulation 
 
As was discussed previously a monte carlo simulation was performed to find out what the 
actual variances of the output parameters were, and then these values were compared to 
the sensitivity based tolerance analysis described by Equation 1. 
 

Accounting for mismatch 
 

The transistors M1, M2 and M3, M4 have to be matched in order for the circuit to 
function correctly, keeping all transistors in the saturated region. As these transistors are 
matched, they will be laid out close to each other on the die, and due to this process 
variations of corresponding input parameters (i.e. W1,W2) would be similar. Therefore, 
in order to accurately simulate process variations in the nominal circuit it was necessary 
to introduce a small mismatch percentage between corresponding input parameters in 
matched transistors, while at the same time varying the 2 parameters by a greater 
percentage from its nominal value. With this technique the matched parameters (i.e. W1, 
W2) become a single parameter (i.e. W12), and the mismatch becomes another 
independent parameter (i.e. mmW12). 

Calculating Sensitivities 
 

The method proposed in [Fangs thesis!] to calculate the variance of output 
parameters is implemented mathematically in Equation 1. In order to perform this 
computation it is necessary to find out the sensitivity of each upper level parameter to 
each lower level parameter. The basic calculation of sensitivity is shown in Equation 2. In 
order to account for the mismatch between matched parameters an additional term needs 
to be added to Equation 1, and this change is depicted below: 
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Equation 3 
Where, Pm is the mismatch of 2 parameters, and m is the number of mismatched 

parameters. A sensitivity simulation was first performed on the first/input stage circuit 
shown in figure 2. Initially sensitivities were calculated for every single input parameter 
of the five transistors, by perturbing 1 parameter by 1% of its nominal value and 
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measuring the effect of that change in terms of the percentage change in the following 
output parameters for each transistor: ID, GM, GM, GDS, CGS, VDS, CGD, CDTOT. 
After performing this initial analysis it was clear that the output parameters were much 
more sensitive to certain input parameters. In order to further improve computation time, 
a list of input parameters that were significantly sensitive to the output parameters was 
selected, and all further simulations were run on these. These input parameters were W, 
L, CGSO, CGDO, TOX, VTH0, K1, K2, PDIBLC2, U0, XJ, NFACTOR, PCLM, VOFF, 
PB, and CJ for each transistor. In order to account for matching a second sensitivity 
simulation had to be performed on the 5 transistor input stage. In this second simulation 
all parameters were kept at the nominal value including one of the matched pair (i.e. W1 
in W12). The other parameter (i.e. W2) was varied by the mismatch percentage of 0.5% 
and the sensitivity to each output parameter was found. The result of this simulation was 
then normalized so that it reflected sensitivity to a 1% change in the input mismatches. 

After performing 2 sensitivity calculations – to sensitivities to the variation from 
the mean, and the mismatch variation - on the input stage, a third simulation was run on 
the output stage. This circuit is depicted in figure 3, and the same pre-selected list of 
input parameters was once again varied by 1% to find the sensitivities. The output 
variable Vout from the input stage was considered to be an input to this circuit, and was 
modeled as a voltage source. This is how the hierarchical construct of circuits is exploited 
in this method of analysis. 

  

Monte Carlo Simulation 
 

A Monte Carlo simulation is a brute force method of finding out how a circuit 
would realistically be subject to process variations. This simulation was performed by 
taking the HSpice input file of the circuit in Figure 1 to be the nominal circuit and then 
normally distributing the list of input parameters specified in the previous section by a 
3σ  value of 2%, and also normally distributing the mismatch by a 3σ  value of 0.2%. 
20000 such random circuits were created using the distributions, and they were simulated 
in HSpice to find the outputs. The results were then analyzed to find the variance of the 
output parameters that were listed in the previous section.  

Coding Infrastructure 
 

In order to perform the simulations described above it was necessary to come up 
with a coding infrastructure to modify circuit files accordingly, collect data, and automate 
the process so that these tasks didn’t have to be repeated manually for every single 
HSpice simulation. Since the nominal circuit had to be modified multiple times in both 
methods of simulation, and a new circuit file need to be generated for each run it was 
decided to design a new input format that could describe either of the 2 required circuits 
in about 20 lines. This format is easily converted to files in HSpice format and vice versa. 
The use of this input format helped to simplify the programming effort, and made it easy 
to parse through any of the three input circuits in figures 1,2, and 3 with minimal changes 
to the code. 
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All the programming was done using Java 1.4.2 developed by Sun Microsystems, 
and developed on the Eclipse 3.0.0 design environment. The Java programs were run in a 
Unix environment, and used to perform the necessary modifications, call HSpice, and 
then collect the results. Java was chosen in order to provide modularity to separate the 
different simulation steps into classes and also to be able to reduce the code redundancy 
for the 2 different types of simulations. The classes used and their purpose are described 
in the following sections: 
 

Classes used for Sensitivity 
 
HSpiceFileGrabber.java – Reads an HSpice input file and translates it into the new easy 
to parse format. It also stores a ‘y’ or ‘n’ next to each parameter value indicating that it 
may be varied or not. The list of parameters that can be varied must be specified in this 
file. 
 
GrabSpice.java - Grabs all the output values of a single simulation and writes it to a 
specified output file. 
 
CircuitBuilder.java – The percentage that the input parameters must be varied by is the 
input to this file. A modification must also be made depending on whether the simulation 
runs are for standard process variation sensitivity calculations or the sensitivity to 
mismatch calculations. This class goes through the input file created by 
HspiceFileGrabber.java and builds a new circuit (with one input parameter varied) for 
each variable input parameter. 
 
HSPiceFileCreatorSens.java - Uses information in myInputFile, and PARAMFILE 
(which contains the names of all the input parameters) to simulate circuit files created by 
CircuitBuilder.java. After each HSpice simulation GrabSpice.java is called to grab all the 
outputs of that run and write it to "o1outputs.temp". After all the simulation runs are 
complete calcSensitivity.java is called to calculate the sensitivity to each input parameter 
to all output parameters. 
 
CalcSensitivity.java – This class goes through all the data collected by 
HspiceFileCreatorSens.java and performs the sensitivity calculation. All sensitivity data 
is then written to stvt.txt. 
 

Sp
o =

ONew −OInitial
OInitial

 

 
 

 

 
 ⋅

100%
∆P

 

Equation 4 

Where SP
O  is the sensitivity of output parameter O to a change in input parameter P. This 

is essentially the same as Equation 3. 
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calcSensO1.java - calls HspiceFileGrabber.java, CircuitBuilder.java to build all the 
specific circuits and HspiceFileCreator.java to perform the sensitivity simulations. 
 
 
 

Classes used for Monte Carlo 
 
HspiceFileGrabber.java and GrabSpice.java perform the same tasks and are shared by 
both programs. 
 
MonteCarlo.java - Calls HspiceFileGrabber on the input file, then calls Pickvals.java to 
generate a specified number of random circuits, and finally calls HSpiceCreator.java to 
simulate the circuits. 
 
PickVals.java – This file takes in the Number of random circuits to be simulated, and the 
3Sigma points of the normal distributions for mismatch and standard variation. It goes 
through each input parameter in file data.txt and creates NUMCIRCUITS random circuits 
by varying each of those parameters within the bounds specified by the normal 
distribution. 
 
HSPiceFileCreator.java - Uses information in myInputFile, and PARAMFILE (which 
contains the names of all the input parameters) to build and simulate circuit files. After 
each simulation GrabSpice is called to grab all the outputs of that run and write it to 
"randout.out". After all the simulation runs are complete GrabParam is called to collect 
output values of each parameter. 
 
GrabParam.java - grabs all the values of a specified output parameter from a file such as 
randout.out, which is generated by multiple HSpice simulations. 
 

Experimental Results 
 

The data collected from the 3 sensitivity runs – Sensitivity to standard variation, 
and mismatch for the input stage, and sensitivity to variations in the output stage – can be 
found in the Appendix section of this report. After analyzing the data and applying 
Equation 3 to the VOut (as defined in previous sections this is the output voltage of the 
input stage) the percentage of the standard deviation from the mean value was found. 
.Compared to the Monte Carlo Approach the sensitivity method produced a 20% error as 
can be seen in table 1. 

 
Type of analysis Standard Deviation of 

Parameter as a Percentage 
of the Nominal Value 

Error % 

Monte Carlo 20K runs 1.585625155  
Sensitivity Method 1.916650749 20.87666135 
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Table 1: Stdev of output parameter VOut in the input stage 

  In order to move to the next block in the hierarchy it was necessary to use the 
connecting parameter VOut as an input to the circuit in figure 3. The sensitivity of Vo and  
id6 of the second stage to a 1% change in VOut was then manually calculated to be 24.144 
and 5.936 respectively. Taking the standard deviation of this parameter to be 1.9167% as 
was calculated above, and the standard deviation of all the other parameters to be 
2/3%(3Sigma point of Monte Carlo run). The following results were obtained: 
 
Type of analysis Standard Deviation of 

Parameter as a Percentage 
of the Nominal Value 

Error % 

Monte Carlo 20K on VO 31.6413  
Sensitivity Method on VO 51.055 61.358 
Monte Carlo 20K on ID6 9.0353  
Sensitivity Method on ID6 12.7265 40.8533 

Table 2: Stdev of output parameters in the output stage 
Since the error seems to have double when propagating up the hierarchy, an extra test 
was performed to see what happens if Monte Carlo was performed on the 2 blocks 
separately and then combined using the sensitivity tolerance analysis technique. In order 
to do this the only change that had to be made was to use 1.5856% as the standard 
deviation for VOut when it is used as an input parameter to the second stage. The results 
obtained from this variation are in table 3. 
 
Type of analysis Standard Deviation of 

Parameter as a Percentage 
of the Nominal Value 

Error % 

Monte Carlo 20K on VO 31.6413  
Sensitivity Method on VO 44.3523 40.174 
Monte Carlo 20K on ID6 9.0353  
Sensitivity Method on ID6 10.9769 21.489 

Table 3: Stdev of output parameters in the 2nd stage(modified) 

What is important to note is that while the Monte Carlo simulation needed 20000 circuit 
simulations and approximately 13 hours of runtime, the 3 sensitivity calculations 
included simulation of less than 150 circuit simulations and could be performed in under 
30 minutes even while making the necessary changes in the code to find sensitivity to 
either the standard variation, or mismatch. 

Conclusions 
 

Two main conclusions can be reached from the research that has been performed. 
Firstly, the technique proposed to calculate the variance of an output parameter using the 
sensitivities of this parameter to a list of input parameters as described in Equation 1, 
seems to under estimate the actual variation by a large percentage (20%). One could 
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argue that since this method is still useful as it is relatively accurate in comparison with 
something like a min-max analysis, and can also be performed so quickly it still has 
practical applications such as rapid test development, and easily identifying problem 
areas in circuits without delay. However, the fact that the error seems to almost double as 
one moves from one level of the hierarchy to the next means that this approach gets more 
inaccurate for circuits with large non linear dependencies, such as the dependency of the 
output parameters of the second stage on VOut of the input stage. More research needs to 
be done to find methods of adding additional correction terms to the equation in order to 
make it work better with highly non-linear circuits. 

Table 3 shows results acquired when the Monte Carlo analysis is done separately 
for each block (This is feasible as the Monte Carlo approach for small blocks is less 
costly), and then calculated sensitivities are used to find the total variance of performance 
parameters. This method is more costly but almost twice as accurate as the purely 
sensitivity based technique. 

Future Work 
 

Previously, the 2nd term of Equation 1 was ignored, as there were no correlations 
between lower level parameters. The next step would be to design a circuit with 4 or 5 
level parameter hierarchies, and perform this analysis on that circuit. Correlation loops as 
described in [cite our earlier paper] will come into effect in such a circuit, and an 
algorithm that identifies such loops needs to be developed. 

More analysis of the current technique needs to be done in order to make this 
proposed approach more accurate. 
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